BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 31252005)

  • 41. A New Lactone from Chaetomium globosum Strain M65 that Inhibits the Motility of Zoospores.
    Mondol MAM; Farthouse J; Islam MT; Schüffler A; Laatsch H
    Nat Prod Commun; 2016 Dec; 11(12):1865-1868. PubMed ID: 30508353
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Improved Chrysin Production by a Combination of Fermentation Factors and Elicitation from
    Kamat S; Kumari M; Sajna KV; Singh SK; Kaushalendra ; Kumar A; Jayabaskaran C
    Microorganisms; 2023 Apr; 11(4):. PubMed ID: 37110422
    [TBL] [Abstract][Full Text] [Related]  

  • 43. SCP production by Chaetomium cellulolyticum, a new thermotolerant cellulolytic fungus.
    Moo-Young M; Chahal DS; Swan JE; Robinson CW
    Biotechnol Bioeng; 1977 Apr; 19(4):527-38. PubMed ID: 856325
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Endophytic Chaetomium globosum enhances maize seedling copper stress tolerance.
    Abou Alhamed MF; Shebany YM
    Plant Biol (Stuttg); 2012 Sep; 14(5):859-63. PubMed ID: 22672065
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cloning and characterization of a novel chitinase gene (chi46) from Chaetomium globosum and identification of its biological activity.
    Liu ZH; Yang Q; Hu S; Zhang JD; Ma J
    Appl Microbiol Biotechnol; 2008 Aug; 80(2):241-52. PubMed ID: 18563407
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The fungal endophyte Chaetomium globosum negatively affects both above- and belowground herbivores in cotton.
    Zhou W; Starr JL; Krumm JL; Sword GA
    FEMS Microbiol Ecol; 2016 Oct; 92(10):. PubMed ID: 27451418
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Xylitol production from a mutant strain of Candida tropicalis.
    Jeon YJ; Shin HS; Rogers PL
    Lett Appl Microbiol; 2011 Jul; 53(1):106-13. PubMed ID: 21554342
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Molecular epigenetic approach activates silent gene cluster producing dimeric bis-spiro-azaphilones in Chaetomium globosum CBS148.51.
    Wang MH; Jiang T; Ding G; Niu SB; Wang XW; Yu M; Gu YC; Zhang QB; Chen JH; Jia HM; Zou ZM
    J Antibiot (Tokyo); 2017 Jun; 70(6):801-804. PubMed ID: 28246383
    [No Abstract]   [Full Text] [Related]  

  • 49. Production of 1,3-propanediol by Clostridium butyricum growing on biodiesel-derived crude glycerol through a non-sterilized fermentation process.
    Chatzifragkou A; Papanikolaou S; Dietz D; Doulgeraki AI; Nychas GJ; Zeng AP
    Appl Microbiol Biotechnol; 2011 Jul; 91(1):101-12. PubMed ID: 21484206
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nine new cytochalasan alkaloids from Chaetomium globosum TW1-1 (Ascomycota, Sordariales).
    Chen C; Tong Q; Zhu H; Tan D; Zhang J; Xue Y; Yao G; Luo Z; Wang J; Wang Y; Zhang Y
    Sci Rep; 2016 Jan; 6():18711. PubMed ID: 26739896
    [TBL] [Abstract][Full Text] [Related]  

  • 51. New bioactive compounds from aquatic endophyte Chaetomium globosum.
    Ruan BH; Yu ZF; Yang XQ; Yang YB; Hu M; Zhang ZX; Zhou QY; Zhou H; Ding ZT
    Nat Prod Res; 2018 May; 32(9):1050-1055. PubMed ID: 28927295
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Pictet-Spengler reaction-based biosynthetic machinery in fungi.
    Yan W; Ge HM; Wang G; Jiang N; Mei YN; Jiang R; Li SJ; Chen CJ; Jiao RH; Xu Q; Ng SW; Tan RX
    Proc Natl Acad Sci U S A; 2014 Dec; 111(51):18138-43. PubMed ID: 25425666
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enhancement of ε-poly-L-lysine production coupled with precursor L-lysine feeding in glucose-glycerol co-fermentation by Streptomyces sp. M-Z18.
    Chen XS; Ren XD; Zeng X; Zhao FL; Tang L; Zhang HJ; Zhang JH; Mao ZG
    Bioprocess Biosyst Eng; 2013 Dec; 36(12):1843-9. PubMed ID: 23624730
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cloning and expression of a small heat and salt tolerant protein (Hsp22) from Chaetomium globosum.
    Aggarwal R; Gupta S; Sharma S; Banerjee S; Singh P
    Indian J Exp Biol; 2012 Nov; 50(11):826-32. PubMed ID: 23305034
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Bioconversion of (+)-valencene in submerged cultures of the ascomycete Chaetomium globosum.
    Kaspera R; Krings U; Nanzad T; Berger RG
    Appl Microbiol Biotechnol; 2005 Jun; 67(4):477-83. PubMed ID: 15602686
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Demonstration-Scale High-Cell-Density Fermentation of Pichia pastoris.
    Liu WC; Zhu P
    Methods Mol Biol; 2018; 1674():109-116. PubMed ID: 28921432
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Efficient production of recombinant DNA proteins in Saccharomyces cerevisiae by controlled high-cell-density fermentation.
    Alberghina L; Porro D; Martegani E; Ranzi BM
    Biotechnol Appl Biochem; 1991 Aug; 14(1):82-92. PubMed ID: 1910586
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Flavipin in Chaetomium globosum CDW7, an endophytic fungus from Ginkgo biloba, contributes to antioxidant activity.
    Ye Y; Xiao Y; Ma L; Li H; Xie Z; Wang M; Ma H; Tang H; Liu J
    Appl Microbiol Biotechnol; 2013 Aug; 97(16):7131-9. PubMed ID: 23740314
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Molecular cloning and characterization of a GH11 endoxylanase from Chaetomium globosum, and its use in enzymatic pretreatment of biomass.
    Singh RK; Tiwari MK; Kim D; Kang YC; Ramachandran P; Lee JK
    Appl Microbiol Biotechnol; 2013 Aug; 97(16):7205-14. PubMed ID: 23184220
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Targeted disruption of transcriptional regulators in Chaetomium globosum activates biosynthetic pathways and reveals transcriptional regulator-like behavior of aureonitol.
    Nakazawa T; Ishiuchi K; Sato M; Tsunematsu Y; Sugimoto S; Gotanda Y; Noguchi H; Hotta K; Watanabe K
    J Am Chem Soc; 2013 Sep; 135(36):13446-55. PubMed ID: 23941144
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.