These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 31252011)
21. Applications of gold nanorods for cancer imaging and photothermal therapy. Huang X; El-Sayed IH; El-Sayed MA Methods Mol Biol; 2010; 624():343-57. PubMed ID: 20217607 [TBL] [Abstract][Full Text] [Related]
22. Carbon-Coated Gold Nanorods: A Facile Route to Biocompatible Materials for Photothermal Applications. Kaneti YV; Chen C; Liu M; Wang X; Yang JL; Taylor RA; Jiang X; Yu A ACS Appl Mater Interfaces; 2015 Nov; 7(46):25658-68. PubMed ID: 26535913 [TBL] [Abstract][Full Text] [Related]
23. Chitosan/fucoidan multilayer coating of gold nanorods as highly efficient near-infrared photothermal agents for cancer therapy. Manivasagan P; Hoang G; Santha Moorthy M; Mondal S; Minh Doan VH; Kim H; Vy Phan TT; Nguyen TP; Oh J Carbohydr Polym; 2019 May; 211():360-369. PubMed ID: 30824100 [TBL] [Abstract][Full Text] [Related]
24. Near-infrared-II responsive ovalbumin functionalized gold-genipin nanosystem cascading photo-immunotherapy of cancer. Huang S; Hou Y; Tang Z; Suhail M; Cui M; Iqbal MZ; Kong X Nanotechnology; 2024 Jun; 35(36):. PubMed ID: 38861966 [TBL] [Abstract][Full Text] [Related]
25. Functionalized biocompatible WO3 nanoparticles for triggered and targeted in vitro and in vivo photothermal therapy. Sharker SM; Kim SM; Lee JE; Choi KH; Shin G; Lee S; Lee KD; Jeong JH; Lee H; Park SY J Control Release; 2015 Nov; 217():211-20. PubMed ID: 26381897 [TBL] [Abstract][Full Text] [Related]
27. Porous Pd nanoparticles with high photothermal conversion efficiency for efficient ablation of cancer cells. Xiao JW; Fan SX; Wang F; Sun LD; Zheng XY; Yan CH Nanoscale; 2014 Apr; 6(8):4345-51. PubMed ID: 24622916 [TBL] [Abstract][Full Text] [Related]
28. In Situ Growth of CuS/SiO Liu X; Yang T; Han Y; Zou L; Yang H; Jiang J; Liu S; Zhao Q; Huang W ACS Appl Mater Interfaces; 2018 Sep; 10(37):31008-31018. PubMed ID: 30130088 [TBL] [Abstract][Full Text] [Related]
29. Enhanced response of tamoxifen toward the cancer cells using a combination of chemotherapy and photothermal ablation induced by lentinan-functionalized multi-walled carbon nanotubes. Yi W; Zhang P; Hou J; Chen W; Bai L; Yoo S; Khalid A; Hou X Int J Biol Macromol; 2018 Dec; 120(Pt B):1525-1532. PubMed ID: 30227209 [TBL] [Abstract][Full Text] [Related]
31. A carbon nanotube-gemcitabine-lentinan three-component composite for chemo-photothermal synergistic therapy of cancer. Zhang P; Yi W; Hou J; Yoo S; Jin W; Yang Q Int J Nanomedicine; 2018; 13():3069-3080. PubMed ID: 29872294 [TBL] [Abstract][Full Text] [Related]
32. Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo. Tian Q; Jiang F; Zou R; Liu Q; Chen Z; Zhu M; Yang S; Wang J; Wang J; Hu J ACS Nano; 2011 Dec; 5(12):9761-71. PubMed ID: 22059851 [TBL] [Abstract][Full Text] [Related]
33. Selective photothermal therapy for mixed cancer cells using aptamer-conjugated nanorods. Huang YF; Sefah K; Bamrungsap S; Chang HT; Tan W Langmuir; 2008 Oct; 24(20):11860-5. PubMed ID: 18817428 [TBL] [Abstract][Full Text] [Related]
34. Facile synthesis of biocompatible cysteine-coated CuS nanoparticles with high photothermal conversion efficiency for cancer therapy. Liu X; Li B; Fu F; Xu K; Zou R; Wang Q; Zhang B; Chen Z; Hu J Dalton Trans; 2014 Aug; 43(30):11709-15. PubMed ID: 24950757 [TBL] [Abstract][Full Text] [Related]
35. Photothermal lysis of pathogenic bacteria by platinum nanodots decorated gold nanorods under near infrared irradiation. Zhang J; Feng Y; Mi J; Shen Y; Tu Z; Liu L J Hazard Mater; 2018 Jan; 342():121-130. PubMed ID: 28826054 [TBL] [Abstract][Full Text] [Related]
36. Gold nanorods/mesoporous silica-based nanocomposite as theranostic agents for targeting near-infrared imaging and photothermal therapy induced with laser. Liu Y; Xu M; Chen Q; Guan G; Hu W; Zhao X; Qiao M; Hu H; Liang Y; Zhu H; Chen D Int J Nanomedicine; 2015; 10():4747-61. PubMed ID: 26251596 [TBL] [Abstract][Full Text] [Related]
37. Study of oxygen-deficient W Zhao Z; Yang S; Yang P; Lin J; Fan J; Zhang B Biomater Adv; 2022 May; 136():212772. PubMed ID: 35929311 [TBL] [Abstract][Full Text] [Related]
38. Modulation of oxygen vacancy in tungsten oxide nanosheets for Vis-NIR light-enhanced electrocatalytic hydrogen production and anticancer photothermal therapy. Liang H; Xi H; Liu S; Zhang X; Liu H Nanoscale; 2019 Oct; 11(39):18183-18190. PubMed ID: 31556902 [TBL] [Abstract][Full Text] [Related]
40. Activating Layered Metal Oxide Nanomaterials via Structural Engineering as Biodegradable Nanoagents for Photothermal Cancer Therapy. Zhou Z; Wang X; Zhang H; Huang H; Sun L; Ma L; Du Y; Pei C; Zhang Q; Li H; Ma L; Gu L; Liu Z; Cheng L; Tan C Small; 2021 Mar; 17(12):e2007486. PubMed ID: 33590671 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]