These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 31252059)

  • 1. Towards mapping the 3D genome through high speed single-molecule tracking of functional transcription factors in single living cells.
    Wollman AJM; Hedlund EG; Shashkova S; Leake MC
    Methods; 2020 Jan; 170():82-89. PubMed ID: 31252059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Millisecond single-molecule localization microscopy combined with convolution analysis and automated image segmentation to determine protein concentrations in complexly structured, functional cells, one cell at a time.
    Wollman AJ; Leake MC
    Faraday Discuss; 2015; 184():401-24. PubMed ID: 26419209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ChromoTrace: Computational reconstruction of 3D chromosome configurations for super-resolution microscopy.
    Barton C; Morganella S; Ødegård-Fougner Ø; Alexander S; Ries J; Fitzgerald T; Ellenberg J; Birney E
    PLoS Comput Biol; 2018 Mar; 14(3):e1006002. PubMed ID: 29522506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In-vivo Single-Molecule Imaging in Yeast: Applications and Challenges.
    Podh NK; Paliwal S; Dey P; Das A; Morjaria S; Mehta G
    J Mol Biol; 2021 Nov; 433(22):167250. PubMed ID: 34537238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcription factor clusters regulate genes in eukaryotic cells.
    Wollman AJ; Shashkova S; Hedlund EG; Friemann R; Hohmann S; Leake MC
    Elife; 2017 Aug; 6():. PubMed ID: 28841133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcription factors in eukaryotic cells can functionally regulate gene expression by acting in oligomeric assemblies formed from an intrinsically disordered protein phase transition enabled by molecular crowding.
    Leake MC
    Transcription; 2018; 9(5):298-306. PubMed ID: 29895219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous Detection of mRNA and Protein in S. cerevisiae by Single-Molecule FISH and Immunofluorescence.
    Tutucci E; Singer RH
    Methods Mol Biol; 2020; 2166():51-69. PubMed ID: 32710403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imaging single mRNAs to study dynamics of mRNA export in the yeast Saccharomyces cerevisiae.
    Bensidoun P; Raymond P; Oeffinger M; Zenklusen D
    Methods; 2016 Apr; 98():104-114. PubMed ID: 26784711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of Chromosome Fusions on 3D Genome Organization and Gene Expression in Budding Yeast.
    Di Stefano M; Di Giovanni F; Pozharskaia V; Gomar-Alba M; Baù D; Carey LB; Marti-Renom MA; Mendoza M
    Genetics; 2020 Mar; 214(3):651-667. PubMed ID: 31907200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A family of destabilized cyan fluorescent proteins as transcriptional reporters in S. cerevisiae.
    Hackett EA; Esch RK; Maleri S; Errede B
    Yeast; 2006 Apr; 23(5):333-49. PubMed ID: 16598699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-Molecule Dynamics and Localization of DNA Repair Proteins in Cells.
    Paul MW; Zelensky AN; Wyman C; Kanaar R
    Methods Enzymol; 2018; 600():375-406. PubMed ID: 29458767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D positioning of tagged DNA loci by widefield and super-resolution fluorescence imaging of fixed yeast nuclei.
    Da Mota M; Cau J; Mateos-Langerak J; Lengronne A; Pasero P; Poli J
    STAR Protoc; 2021 Jun; 2(2):100525. PubMed ID: 34027483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromosome positioning and the clustering of functionally related loci in yeast is driven by chromosomal interactions.
    Gehlen LR; Gruenert G; Jones MB; Rodley CD; Langowski J; O'Sullivan JM
    Nucleus; 2012 Jul; 3(4):370-83. PubMed ID: 22688649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoactivation of silicon rhodamines via a light-induced protonation.
    Frei MS; Hoess P; Lampe M; Nijmeijer B; Kueblbeck M; Ellenberg J; Wadepohl H; Ries J; Pitsch S; Reymond L; Johnsson K
    Nat Commun; 2019 Oct; 10(1):4580. PubMed ID: 31594948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide patterns of histone modifications in yeast.
    Millar CB; Grunstein M
    Nat Rev Mol Cell Biol; 2006 Sep; 7(9):657-66. PubMed ID: 16912715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Live-cell imaging reveals the spatiotemporal organization of endogenous RNA polymerase II phosphorylation at a single gene.
    Forero-Quintero LS; Raymond W; Handa T; Saxton MN; Morisaki T; Kimura H; Bertrand E; Munsky B; Stasevich TJ
    Nat Commun; 2021 May; 12(1):3158. PubMed ID: 34039974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of high affinity Tbf1p-binding sites within the budding yeast genome.
    Koering CE; Fourel G; Binet-Brasselet E; Laroche T; Klein F; Gilson E
    Nucleic Acids Res; 2000 Jul; 28(13):2519-26. PubMed ID: 10871401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of human poly (ADP-ribose) polymerase 1 in Saccharomyces cerevisiae: Effect on survival, homologous recombination and identification of genes involved in intracellular localization.
    La Ferla M; Mercatanti A; Rocchi G; Lodovichi S; Cervelli T; Pignata L; Caligo MA; Galli A
    Mutat Res; 2015 Apr; 774():14-24. PubMed ID: 25779917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bypassing bleaching with fluxional fluorophores.
    Strack R
    Nat Methods; 2019 May; 16(5):357. PubMed ID: 31040423
    [No Abstract]   [Full Text] [Related]  

  • 20. Approaches to studying subnuclear organization and gene-nuclear pore interactions.
    Egecioglu DE; D'Urso A; Brickner DG; Light WH; Brickner JH
    Methods Cell Biol; 2014; 122():463-85. PubMed ID: 24857743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.