These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 31252059)

  • 21. Live-Cell Imaging of mRNP-NPC Interactions in Budding Yeast.
    Lari A; Farzam F; Bensidoun P; Oeffinger M; Zenklusen D; Grunwald D; Montpetit B
    Methods Mol Biol; 2019; 2038():131-150. PubMed ID: 31407282
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chromosome conformation capture that detects novel cis- and trans-interactions in budding yeast.
    Chowdhary S; Kainth AS; Gross DS
    Methods; 2020 Jan; 170():4-16. PubMed ID: 31252061
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Photoregulated fluxional fluorophores for live-cell super-resolution microscopy with no apparent photobleaching.
    Halabi EA; Pinotsi D; Rivera-Fuentes P
    Nat Commun; 2019 Mar; 10(1):1232. PubMed ID: 30874551
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Single-Molecule Fluorescence Imaging in Living
    Brouwer I; Patel HP; Meeussen JVW; Pomp W; Lenstra TL
    STAR Protoc; 2020 Dec; 1(3):100142. PubMed ID: 33377036
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nuclear targeted Saccharomyces cerevisiae asparagine synthetases associate with the mitotic spindle regardless of their enzymatic activity.
    Noree C; Sirinonthanawech N
    PLoS One; 2020; 15(12):e0243742. PubMed ID: 33347445
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spatial organization of the budding yeast genome in the cell nucleus and identification of specific chromatin interactions from multi-chromosome constrained chromatin model.
    Gürsoy G; Xu Y; Liang J
    PLoS Comput Biol; 2017 Jul; 13(7):e1005658. PubMed ID: 28704374
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantitative analyses of the 3D nuclear landscape recorded with super-resolved fluorescence microscopy.
    Schmid VJ; Cremer M; Cremer T
    Methods; 2017 Jul; 123():33-46. PubMed ID: 28323041
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Automatic fluorescent tag detection in 3D with super-resolution: application to the analysis of chromosome movement.
    Thomann D; Rines DR; Sorger PK; Danuser G
    J Microsc; 2002 Oct; 208(Pt 1):49-64. PubMed ID: 12366597
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantitative image mean squared displacement (iMSD) analysis of the dynamics of profilin 1 at the membrane of live cells.
    Davey RJ; Digman MA; Gratton E; Moens PDJ
    Methods; 2018 May; 140-141():119-125. PubMed ID: 29242135
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tracking of single and multiple genomic loci in living yeast cells.
    Lassadi I; Bystricky K
    Methods Mol Biol; 2011; 745():499-522. PubMed ID: 21660713
    [TBL] [Abstract][Full Text] [Related]  

  • 31. How to Measure Separations and Angles Between Intramolecular Fluorescent Markers.
    Mortensen KI; Sung J; Spudich JA; Flyvbjerg H
    Methods Enzymol; 2016; 581():147-185. PubMed ID: 27793279
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Single-molecule and super-resolution imaging of transcription in living bacteria.
    Stracy M; Kapanidis AN
    Methods; 2017 May; 120():103-114. PubMed ID: 28414097
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Revealing the Raft Domain Organization in the Plasma Membrane by Single-Molecule Imaging of Fluorescent Ganglioside Analogs.
    Suzuki KGN; Ando H; Komura N; Konishi M; Imamura A; Ishida H; Kiso M; Fujiwara TK; Kusumi A
    Methods Enzymol; 2018; 598():267-282. PubMed ID: 29306438
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 3D single-molecule super-resolution microscopy with a tilted light sheet.
    Gustavsson AK; Petrov PN; Lee MY; Shechtman Y; Moerner WE
    Nat Commun; 2018 Jan; 9(1):123. PubMed ID: 29317629
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Super-resolution microscopy approaches to nuclear nanostructure imaging.
    Cremer C; Szczurek A; Schock F; Gourram A; Birk U
    Methods; 2017 Jul; 123():11-32. PubMed ID: 28390838
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Green fluorescent protein-Dal80p illuminates up to 16 distinct foci that colocalize with and exhibit the same behavior as chromosomal DNA proceeding through the cell cycle of Saccharomyces cerevisiae.
    Distler M; Kulkarni A; Rai R; Cooper TG
    J Bacteriol; 2001 Aug; 183(15):4636-42. PubMed ID: 11443099
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cassette series designed for live-cell imaging of proteins and high-resolution techniques in yeast.
    Young CL; Raden DL; Caplan JL; Czymmek KJ; Robinson AS
    Yeast; 2012 Mar; 29(3-4):119-36. PubMed ID: 22473760
    [TBL] [Abstract][Full Text] [Related]  

  • 38. ATF/CREB sites present in sub-telomeric regions of Saccharomyces cerevisiae chromosomes are part of promoters and act as UAS/URS of highly conserved COS genes.
    Spode I; Maiwald D; Hollenberg CP; Suckow M
    J Mol Biol; 2002 May; 319(2):407-20. PubMed ID: 12051917
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Correlative 3D Structured Illumination Microscopy and Single-Molecule Localization Microscopy for Imaging Cancer Invasion.
    Pinnington SJL; Marshall JF; Wheeler AP
    Methods Mol Biol; 2018; 1764():253-265. PubMed ID: 29605919
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Split-EGFP screens for the detection and localisation of protein-protein interactions in living yeast cells.
    Barnard E; Timson DJ
    Methods Mol Biol; 2010; 638():303-17. PubMed ID: 20238279
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.