BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 31252108)

  • 1. Zinc and lead encapsulated in amorphous ferric cements within hardpans in situ formed from sulfidic Cu-Pb-Zn tailings.
    Liu Y; Wu S; Southam G; Nguyen TAH; Kopittke PM; Paterson DJ; Huang L
    Environ Pollut; 2019 Sep; 252(Pt B):1106-1116. PubMed ID: 31252108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microstructural characteristics of naturally formed hardpan capping sulfidic copper-lead-zinc tailings.
    Liu Y; Wu S; Nguyen TAH; Southam G; Chan TS; Lu YR; Huang L
    Environ Pollut; 2018 Nov; 242(Pt B):1500-1509. PubMed ID: 30144723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unravelling in-situ hardpan properties and functions in capping sulfidic Cu-Pb-Zn tailings and forming a duplex soil system cover.
    Nguyen TAH; Liu Y; Wu S; Huang L
    J Hazard Mater; 2022 Mar; 425():127943. PubMed ID: 34894505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rhizosphere modifications of iron-rich minerals and forms of heavy metals encapsulated in sulfidic tailings hardpan.
    Liu Y; Wu S; Saavedra-Mella F; Nguyen TAH; Southam G; Chan TS; Lu YR; Huang L
    J Hazard Mater; 2020 Feb; 384():121444. PubMed ID: 31629592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioaugmentation with Acidithiobacillus species accelerates mineral weathering and formation of secondary mineral cements for hardpan development in sulfidic Pb-Zn tailings.
    Liu Y; Wu S; Southam G; Chan TS; Lu YR; Paterson DJ; Huang L
    J Hazard Mater; 2021 Jun; 411():124988. PubMed ID: 33472156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphate treatment alleviated acute phytotoxicity of heavy metals in sulfidic Pb-Zn mine tailings.
    Saavedra-Mella F; Liu Y; Southam G; Huang L
    Environ Pollut; 2019 Jul; 250():676-685. PubMed ID: 31035150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The flotation tailings of the former Pb-Zn mine of Touiref (NW Tunisia): mineralogy, mine drainage prediction, base-metal speciation assessment and geochemical modeling.
    Othmani MA; Souissi F; Bouzahzah H; Bussière B; da Silva EF; Benzaazoua M
    Environ Sci Pollut Res Int; 2015 Feb; 22(4):2877-90. PubMed ID: 25220771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical and mineralogical changes of waste and tailings from the Murgul Cu deposit (Artvin, NE Turkey): implications for occurrence of acid mine drainage.
    Sağlam ES; Akçay M
    Environ Sci Pollut Res Int; 2016 Apr; 23(7):6584-607. PubMed ID: 26637995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Distribution and speciation of Pb in Arabidopsis thaliana shoot and rhizosphere soil by in situ synchrotron radiation micro X-ray fluorescence and X-ray absorption near edge structure].
    Shen YT
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Mar; 34(3):818-22. PubMed ID: 25208420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in zinc speciation with mine tailings acidification in a semiarid weathering environment.
    Hayes SM; O'Day PA; Webb SM; Maier RM; Chorover J
    Environ Sci Technol; 2011 Sep; 45(17):7166-72. PubMed ID: 21761897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fractions and colloidal distribution of arsenic associated with iron oxide minerals in lead-zinc mine-contaminated soils: Comparison of tailings and smelter pollution.
    Ma J; Lei M; Weng L; Li Y; Chen Y; Islam MS; Zhao J; Chen T
    Chemosphere; 2019 Jul; 227():614-623. PubMed ID: 31009868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ferric minerals and organic matter change arsenic speciation in copper mine tailings.
    Wang P; Liu Y; Menzies NW; Wehr JB; de Jonge MD; Howard DL; Kopittke PM; Huang L
    Environ Pollut; 2016 Nov; 218():835-843. PubMed ID: 27524252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extremely High Phosphate Sorption Capacity in Cu-Pb-Zn Mine Tailings.
    Huang L; Li X; Nguyen TA
    PLoS One; 2015; 10(8):e0135364. PubMed ID: 26295582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of hydrology on heavy metal speciation and mobility in a Pb-Zn mine tailing.
    Kovács E; Dubbin WE; Tamás J
    Environ Pollut; 2006 May; 141(2):310-20. PubMed ID: 16219405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immobilization of Cu, Pb and Zn in mine-contaminated soils using reactive materials.
    Navarro A; Cardellach E; Corbella M
    J Hazard Mater; 2011 Feb; 186(2-3):1576-85. PubMed ID: 21190796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heavy metal distribution and chemical speciation in tailings and soils around a Pb-Zn mine in Spain.
    Rodríguez L; Ruiz E; Alonso-Azcárate J; Rincón J
    J Environ Manage; 2009 Feb; 90(2):1106-16. PubMed ID: 18572301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of hardpan formation on the reactivity of sulfidic mine tailings: A case study at Joutel mine (Québec).
    Elghali A; Benzaazoua M; Bussière B; Kennedy C; Parwani R; Graham S
    Sci Total Environ; 2019 Mar; 654():118-128. PubMed ID: 30439688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of metal partitioning and mobility in a sulfidic mine tailing pile under oxic and anoxic conditions.
    Pinto PX; Al-Abed SR; Holder C; Reisman DJ
    J Environ Manage; 2014 Jul; 140():135-44. PubMed ID: 24747936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Geochemistry and pH control of seepage from Ni-Cu rich mine tailings at Selebi Phikwe, Botswana.
    Sracek O; Kříbek B; Mihaljevič M; Ettler V; Vaněk A; Penížek V; Filip J; Veselovský F; Bagai ZB
    Environ Monit Assess; 2018 Jul; 190(8):482. PubMed ID: 30039179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of metals from lead-zinc mine tailings using bioleaching and followed by sulfide precipitation.
    Ye M; Li G; Yan P; Ren J; Zheng L; Han D; Sun S; Huang S; Zhong Y
    Chemosphere; 2017 Oct; 185():1189-1196. PubMed ID: 28772358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.