These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 31252282)

  • 1. Putting the brakes on the cell cycle: mechanisms of cellular growth arrest.
    Pack LR; Daigh LH; Meyer T
    Curr Opin Cell Biol; 2019 Oct; 60():106-113. PubMed ID: 31252282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differentially regulated gene expression in quiescence versus senescence and identification of ARID5A as a quiescence associated marker.
    Anwar T; Sen B; Aggarwal S; Nath R; Pathak N; Katoch A; Aiyaz M; Trehanpati N; Khosla S; Ramakrishna G
    J Cell Physiol; 2018 May; 233(5):3695-3712. PubMed ID: 29044508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic transcriptome profiling in DNA damage-induced cellular senescence and transient cell-cycle arrest.
    Zhao Z; Dong Q; Liu X; Wei L; Liu L; Li Y; Wang X
    Genomics; 2020 Mar; 112(2):1309-1317. PubMed ID: 31376528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of p53 in the Regulation of Cellular Senescence.
    Mijit M; Caracciolo V; Melillo A; Amicarelli F; Giordano A
    Biomolecules; 2020 Mar; 10(3):. PubMed ID: 32182711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA-damage response network at the crossroads of cell-cycle checkpoints, cellular senescence and apoptosis.
    Schmitt E; Paquet C; Beauchemin M; Bertrand R
    J Zhejiang Univ Sci B; 2007 Jun; 8(6):377-97. PubMed ID: 17565509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The molecular architecture of cell cycle arrest.
    Stallaert W; Taylor SR; Kedziora KM; Taylor CD; Sobon HK; Young CL; Limas JC; Varblow Holloway J; Johnson MS; Cook JG; Purvis JE
    Mol Syst Biol; 2022 Sep; 18(9):e11087. PubMed ID: 36161508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome homeostasis defects drive enlarged cells into senescence.
    Manohar S; Estrada ME; Uliana F; Vuina K; Alvarez PM; de Bruin RAM; Neurohr GE
    Mol Cell; 2023 Nov; 83(22):4032-4046.e6. PubMed ID: 37977116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DYRK1A protein kinase promotes quiescence and senescence through DREAM complex assembly.
    Litovchick L; Florens LA; Swanson SK; Washburn MP; DeCaprio JA
    Genes Dev; 2011 Apr; 25(8):801-13. PubMed ID: 21498570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comprehensive model for the proliferation-quiescence decision in response to endogenous DNA damage in human cells.
    Heldt FS; Barr AR; Cooper S; Bakal C; Novák B
    Proc Natl Acad Sci U S A; 2018 Mar; 115(10):2532-2537. PubMed ID: 29463760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell cycle arrest in replicative senescence is not an immediate consequence of telomere dysfunction.
    Nassrally MS; Lau A; Wise K; John N; Kotecha S; Lee KL; Brooks RF
    Mech Ageing Dev; 2019 Apr; 179():11-22. PubMed ID: 30710559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct transcriptional networks in quiescent myoblasts: a role for Wnt signaling in reversible vs. irreversible arrest.
    Subramaniam S; Sreenivas P; Cheedipudi S; Reddy VR; Shashidhara LS; Chilukoti RK; Mylavarapu M; Dhawan J
    PLoS One; 2014; 8(6):e65097. PubMed ID: 23755177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graded regulation of cellular quiescence depth between proliferation and senescence by a lysosomal dimmer switch.
    Fujimaki K; Li R; Chen H; Della Croce K; Zhang HH; Xing J; Bai F; Yao G
    Proc Natl Acad Sci U S A; 2019 Nov; 116(45):22624-22634. PubMed ID: 31636214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immortalised breast epithelia survive prolonged DNA replication stress and return to cycle from a senescent-like state.
    Maya-Mendoza A; Merchut-Maya JM; Bartkova J; Bartek J; Streuli CH; Jackson DA
    Cell Death Dis; 2014 Jul; 5(7):e1351. PubMed ID: 25058425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel ATM/TP53/p21-mediated checkpoint only activated by chronic γ-irradiation.
    Cao L; Kawai H; Sasatani M; Iizuka D; Masuda Y; Inaba T; Suzuki K; Ootsuyama A; Umata T; Kamiya K; Suzuki F
    PLoS One; 2014; 9(8):e104279. PubMed ID: 25093836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantifying Senescence-Associated Phenotypes in Primary Multipotent Mesenchymal Stromal Cell Cultures.
    Nadeau S; Cheng A; Colmegna I; Rodier F
    Methods Mol Biol; 2019; 2045():93-105. PubMed ID: 31020633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endogenous Replication Stress in Mother Cells Leads to Quiescence of Daughter Cells.
    Arora M; Moser J; Phadke H; Basha AA; Spencer SL
    Cell Rep; 2017 May; 19(7):1351-1364. PubMed ID: 28514656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Geroconversion: irreversible step to cellular senescence.
    Blagosklonny MV
    Cell Cycle; 2014; 13(23):3628-35. PubMed ID: 25483060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of a pyridine derivative inducing senescence in ovarian cancer cell lines via P21 activation.
    Shang D; Wu Y; Ding Y; Lu Z; Shen Y; Zhu F; Liu H; Zhu C; Tu Z
    Clin Exp Pharmacol Physiol; 2018 May; 45(5):452-460. PubMed ID: 29143360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The cell fate: senescence or quiescence.
    Terzi MY; Izmirli M; Gogebakan B
    Mol Biol Rep; 2016 Nov; 43(11):1213-1220. PubMed ID: 27558094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA replication and mitotic entry: A brake model for cell cycle progression.
    Lemmens B; Lindqvist A
    J Cell Biol; 2019 Dec; 218(12):3892-3902. PubMed ID: 31712253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.