BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 31252316)

  • 1. Catalytic pyrolysis of Chlorella vulgaris: Kinetic and thermodynamic analysis.
    Fong MJB; Loy ACM; Chin BLF; Lam MK; Yusup S; Jawad ZA
    Bioresour Technol; 2019 Oct; 289():121689. PubMed ID: 31252316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Particle swarm optimization and global sensitivity analysis for catalytic co-pyrolysis of Chlorella vulgaris and plastic waste mixtures.
    Majid M; Chin BLF; Jawad ZA; Chai YH; Lam MK; Yusup S; Cheah KW
    Bioresour Technol; 2021 Jun; 329():124874. PubMed ID: 33647605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characteristics and kinetics study of simultaneous pyrolysis of microalgae Chlorella vulgaris, wood and polypropylene through TGA.
    Azizi K; Keshavarz Moraveji M; Abedini Najafabadi H
    Bioresour Technol; 2017 Nov; 243():481-491. PubMed ID: 28689141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co-pyrolysis characteristics of microalgae Chlorella vulgaris and coal through TGA.
    Chen C; Ma X; He Y
    Bioresour Technol; 2012 Aug; 117():264-73. PubMed ID: 22617036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermogravimetric kinetic modelling of in-situ catalytic pyrolytic conversion of rice husk to bioenergy using rice hull ash catalyst.
    Loy ACM; Gan DKW; Yusup S; Chin BLF; Lam MK; Shahbaz M; Unrean P; Acda MN; Rianawati E
    Bioresour Technol; 2018 Aug; 261():213-222. PubMed ID: 29665455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic analysis and pyrolysis behaviour of waste biomass towards its bioenergy potential.
    Mishra RK; Mohanty K
    Bioresour Technol; 2020 Sep; 311():123480. PubMed ID: 32413639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pyrolysis and combustion kinetics of Sida cordifolia L. using thermogravimetric analysis.
    Boubacar Laougé Z; Merdun H
    Bioresour Technol; 2020 Mar; 299():122602. PubMed ID: 31869633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pyrolysis kinetics and thermodynamic parameters of castor (Ricinus communis) residue using thermogravimetric analysis.
    Kaur R; Gera P; Jha MK; Bhaskar T
    Bioresour Technol; 2018 Feb; 250():422-428. PubMed ID: 29195154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pyrolysis of banana leaves biomass: Physico-chemical characterization, thermal decomposition behavior, kinetic and thermodynamic analyses.
    Singh RK; Pandey D; Patil T; Sawarkar AN
    Bioresour Technol; 2020 Aug; 310():123464. PubMed ID: 32388356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Apparent kinetics of high temperature oxidative decomposition of microalgal biomass.
    Ali SA; Razzak SA; Hossain MM
    Bioresour Technol; 2015 Jan; 175():569-77. PubMed ID: 25459869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights on kinetic triplets and thermodynamic analysis of Delonix regia biomass pyrolysis.
    Rammohan D; Kishore N; Uppaluri RVS
    Bioresour Technol; 2022 Aug; 358():127375. PubMed ID: 35623604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of thermal degradation of banana (Musa balbisiana) trunk biomass waste using iso-conversional models.
    Kumar M; Shukla SK; Upadhyay SN; Mishra PK
    Bioresour Technol; 2020 Aug; 310():123393. PubMed ID: 32334359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis.
    Mishra RK; Mohanty K
    Bioresour Technol; 2018 Mar; 251():63-74. PubMed ID: 29272770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics and thermodynamic analysis in one-pot pyrolysis of rice hull using renewable calcium oxide based catalysts.
    Gan DKW; Loy ACM; Chin BLF; Yusup S; Unrean P; Rianawati E; Acda MN
    Bioresour Technol; 2018 Oct; 265():180-190. PubMed ID: 29894912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomass valorization of Eichhornia crassipes root using thermogravimetric analysis.
    Pal DB; Tiwari AK; Srivastava N; Ahmad I; Abohashrh M; Gupta VK
    Environ Res; 2022 Nov; 214(Pt 4):114046. PubMed ID: 35998700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy optimization from a binary mixture of non-edible oilseeds pyrolysis: Kinetic triplets analysis using Thermogravimetric Analyser and prediction modeling by Artificial Neural Network.
    Sahoo A; Gautam R; Kumar S; Mohanty K
    J Environ Manage; 2021 Nov; 297():113253. PubMed ID: 34284329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermo-kinetics and product analysis of the catalytic pyrolysis of Pongamia residual cake.
    Masawat N; Atong D; Sricharoenchaikul V
    J Environ Manage; 2019 Jul; 242():238-245. PubMed ID: 31048229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pyrolysis kinetics and synergistic effect in co-pyrolysis of Samanea saman seeds and polyethylene terephthalate using thermogravimetric analyser.
    Mishra RK; Sahoo A; Mohanty K
    Bioresour Technol; 2019 Oct; 289():121608. PubMed ID: 31207415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal decomposition and kinetics of coal and fermented cornstalk using thermogravimetric analysis.
    He Y; Chang C; Li P; Han X; Li H; Fang S; Chen J; Ma X
    Bioresour Technol; 2018 Jul; 259():294-303. PubMed ID: 29573608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of thermodynamic and kinetic parameters of Albizia lebbeck seed pods using thermogravimetric analysis.
    Rajamohan S; Chidambaresh S; Sundarrajan H; Balakrishnan S; Sirohi R; Cao DN; Hoang AT
    Bioresour Technol; 2023 Sep; 384():129333. PubMed ID: 37321307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.