These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 31252420)

  • 1. Confinement effect on the low temperature specific heat for ultrathin silicon nanowires: a first principles study.
    González I; Calvino M; Trejo A; Salazar F; Cruz-Irisson M
    J Phys Condens Matter; 2019 Oct; 31(42):425303. PubMed ID: 31252420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preferential Positioning, Stability, and Segregation of Dopants in Hexagonal Si Nanowires.
    Amato M; Ossicini S; Canadell E; Rurali R
    Nano Lett; 2019 Feb; 19(2):866-876. PubMed ID: 30608707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of the electron-phonon coupling on the thermal conductivity of silicon nanowires.
    Wan W; Xiong B; Zhang W; Feng J; Wang E
    J Phys Condens Matter; 2012 Jul; 24(29):295402. PubMed ID: 22728956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heat conductance is strongly anisotropic for pristine silicon nanowires.
    Markussen T; Jauho AP; Brandbyge M
    Nano Lett; 2008 Nov; 8(11):3771-5. PubMed ID: 18811212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of Phonon Surface Scattering on Thermal Energy Distribution of Si and SiGe Nanowires.
    Malhotra A; Maldovan M
    Sci Rep; 2016 May; 6():25818. PubMed ID: 27174699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature-dependent Raman scattering of silicon nanowires.
    Su Z; Sha J; Pan G; Liu J; Yang D; Dickinson C; Zhou W
    J Phys Chem B; 2006 Jan; 110(3):1229-34. PubMed ID: 16471668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlled synthesis of ultrathin ZnO nanowires using micellar gold nanoparticles as catalyst templates.
    Yin H; Wang Q; Geburt S; Milz S; Ruttens B; Degutis G; D'Haen J; Shan L; Punniyakoti S; D'Olieslaeger M; Wagner P; Ronning C; Boyen HG
    Nanoscale; 2013 Aug; 5(15):7046-53. PubMed ID: 23807664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal Phase Effects in Si Nanowire Polytypes and Their Homojunctions.
    Amato M; Kaewmaraya T; Zobelli A; Palummo M; Rurali R
    Nano Lett; 2016 Sep; 16(9):5694-700. PubMed ID: 27530077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding quantum confinement in nanowires: basics, applications and possible laws.
    Mohammad SN
    J Phys Condens Matter; 2014 Oct; 26(42):423202. PubMed ID: 25245123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative determination of contributions to the thermoelectric power factor in Si nanostructures.
    Ryu HJ; Aksamija Z; Paskiewicz DM; Scott SA; Lagally MG; Knezevic I; Eriksson MA
    Phys Rev Lett; 2010 Dec; 105(25):256601. PubMed ID: 21231606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum-confined nanowires as vehicles for enhanced electrical transport.
    Mohammad SN
    Nanotechnology; 2012 Jul; 23(28):285707. PubMed ID: 22728637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of phonon-surface roughness scattering on thermal conductivity of thin si nanowires.
    Martin P; Aksamija Z; Pop E; Ravaioli U
    Phys Rev Lett; 2009 Mar; 102(12):125503. PubMed ID: 19392295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultimate Confinement of Phonon Propagation in Silicon Nanocrystalline Structure.
    Oyake T; Feng L; Shiga T; Isogawa M; Nakamura Y; Shiomi J
    Phys Rev Lett; 2018 Jan; 120(4):045901. PubMed ID: 29437417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A first-principles study of the thermodynamic and electronic properties of Mg and MgH2 nanowires.
    Wu X; Zhang R; Yang J
    Phys Chem Chem Phys; 2016 Jul; 18(28):19412-9. PubMed ID: 27376680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sharp corners in the cross section of ultrathin Si nanowires.
    Cao JX; Gong XG; Zhong JX; Wu RQ
    Phys Rev Lett; 2006 Sep; 97(13):136105. PubMed ID: 17026052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum confinement and electroluminescence in ultrathin silicon nanowires fabricated by a maskless etching technique.
    Irrera A; Artoni P; Iacona F; Pecora EF; Franzò G; Galli M; Fazio B; Boninelli S; Priolo F
    Nanotechnology; 2012 Feb; 23(7):075204. PubMed ID: 22273546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic growth and characterization of gallium nitride nanowires.
    Chen CC; Yeh CC; Chen CH; Yu MY; Liu HL; Wu JJ; Chen KH; Chen LC; Peng JY; Chen YF
    J Am Chem Soc; 2001 Mar; 123(12):2791-8. PubMed ID: 11456965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Pathway to Type-I Band Alignment in Ge/Si Core-Shell Nanowires.
    Kim J; Lee JH; Hong KH
    J Phys Chem Lett; 2013 Jan; 4(1):121-6. PubMed ID: 26291223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quasi-Ballistic Heat Conduction due to Lévy Phonon Flights in Silicon Nanowires.
    Anufriev R; Gluchko S; Volz S; Nomura M
    ACS Nano; 2018 Dec; 12(12):11928-11935. PubMed ID: 30418017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-temperature growth of silicon nanotubes and nanowires on amorphous substrates.
    Mbenkum BN; Schneider AS; Schütz G; Xu C; Richter G; van Aken PA; Majer G; Spatz JP
    ACS Nano; 2010 Apr; 4(4):1805-12. PubMed ID: 20218667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.