BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 31252430)

  • 21. Structure reveals why genome folding is necessary for site-specific integration of foreign DNA into CRISPR arrays.
    Santiago-Frangos A; Henriques WS; Wiegand T; Gauvin CC; Buyukyoruk M; Graham AB; Wilkinson RA; Triem L; Neselu K; Eng ET; Lander GC; Wiedenheft B
    Nat Struct Mol Biol; 2023 Nov; 30(11):1675-1685. PubMed ID: 37710013
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CRISPR-Cas adaptation in Escherichia coli.
    Mitić D; Bolt EL; Ivančić-Baće I
    Biosci Rep; 2023 Mar; 43(3):. PubMed ID: 36809461
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CRISPR repeat sequences and relative spacing specify DNA integration by Pyrococcus furiosus Cas1 and Cas2.
    Grainy J; Garrett S; Graveley BR; P Terns M
    Nucleic Acids Res; 2019 Aug; 47(14):7518-7531. PubMed ID: 31219587
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CRISPR adaptation in Escherichia coli subtypeI-E system.
    Kiro R; Goren MG; Yosef I; Qimron U
    Biochem Soc Trans; 2013 Dec; 41(6):1412-5. PubMed ID: 24256229
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Functional Mini-Integrase in a Two-Protein-type V-C CRISPR System.
    Wright AV; Wang JY; Burstein D; Harrington LB; Paez-Espino D; Kyrpides NC; Iavarone AT; Banfield JF; Doudna JA
    Mol Cell; 2019 Feb; 73(4):727-737.e3. PubMed ID: 30709710
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Detection of CRISPR adaptation.
    Shiriaeva A; Fedorov I; Vyhovskyi D; Severinov K
    Biochem Soc Trans; 2020 Feb; 48(1):257-269. PubMed ID: 32010936
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reconstitution of CRISPR adaptation in vitro and its detection by PCR.
    Fagerlund RD; Ferguson TJ; Maxwell HWR; Opel-Reading HK; Krause KL; Fineran PC
    Methods Enzymol; 2019; 616():411-433. PubMed ID: 30691653
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spacer-length DNA intermediates are associated with Cas1 in cells undergoing primed CRISPR adaptation.
    Musharova O; Klimuk E; Datsenko KA; Metlitskaya A; Logacheva M; Semenova E; Severinov K; Savitskaya E
    Nucleic Acids Res; 2017 Apr; 45(6):3297-3307. PubMed ID: 28204574
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Distribution and phasing of sequence motifs that facilitate CRISPR adaptation.
    Santiago-Frangos A; Buyukyoruk M; Wiegand T; Krishna P; Wiedenheft B
    Curr Biol; 2021 Aug; 31(16):3515-3524.e6. PubMed ID: 34174210
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Harnessing CRISPR-Cas adaptation for RNA recording and beyond.
    Oh GS; An S; Kim S
    BMB Rep; 2024 Jan; 57(1):40-49. PubMed ID: 38053290
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spontaneous CRISPR loci generation in vivo by non-canonical spacer integration.
    Nivala J; Shipman SL; Church GM
    Nat Microbiol; 2018 Mar; 3(3):310-318. PubMed ID: 29379209
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cas4-Dependent Prespacer Processing Ensures High-Fidelity Programming of CRISPR Arrays.
    Lee H; Zhou Y; Taylor DW; Sashital DG
    Mol Cell; 2018 Apr; 70(1):48-59.e5. PubMed ID: 29602742
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural plasticity and in vivo activity of Cas1 from the type I-F CRISPR-Cas system.
    Wilkinson ME; Nakatani Y; Staals RH; Kieper SN; Opel-Reading HK; McKenzie RE; Fineran PC; Krause KL
    Biochem J; 2016 Apr; 473(8):1063-72. PubMed ID: 26929403
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cas4 Nucleases Can Effect Specific Integration of CRISPR Spacers.
    Zhang Z; Pan S; Liu T; Li Y; Peng N
    J Bacteriol; 2019 Jun; 201(12):. PubMed ID: 30936372
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adaptation by Type V-A and V-B CRISPR-Cas Systems Demonstrates Conserved Protospacer Selection Mechanisms Between Diverse CRISPR-Cas Types.
    Wu WY; Jackson SA; Almendros C; Haagsma AC; Yilmaz S; Gort G; van der Oost J; Brouns SJJ; Staals RHJ
    CRISPR J; 2022 Aug; 5(4):536-547. PubMed ID: 35833800
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spacer capture and integration by a type I-F Cas1-Cas2-3 CRISPR adaptation complex.
    Fagerlund RD; Wilkinson ME; Klykov O; Barendregt A; Pearce FG; Kieper SN; Maxwell HWR; Capolupo A; Heck AJR; Krause KL; Bostina M; Scheltema RA; Staals RHJ; Fineran PC
    Proc Natl Acad Sci U S A; 2017 Jun; 114(26):E5122-E5128. PubMed ID: 28611213
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cas3-Derived Target DNA Degradation Fragments Fuel Primed CRISPR Adaptation.
    Künne T; Kieper SN; Bannenberg JW; Vogel AI; Miellet WR; Klein M; Depken M; Suarez-Diez M; Brouns SJ
    Mol Cell; 2016 Sep; 63(5):852-64. PubMed ID: 27546790
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CRISPR-Cas systems in Proteus mirabilis.
    Fallah MS; Mohebbi A; Yasaghi M; Ghaemi EA
    Infect Genet Evol; 2021 Aug; 92():104881. PubMed ID: 33905883
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Coupling transcriptional activation of CRISPR-Cas system and DNA repair genes by Csa3a in Sulfolobus islandicus.
    Liu T; Liu Z; Ye Q; Pan S; Wang X; Li Y; Peng W; Liang Y; She Q; Peng N
    Nucleic Acids Res; 2017 Sep; 45(15):8978-8992. PubMed ID: 28911114
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transcriptional regulator-mediated activation of adaptation genes triggers CRISPR de novo spacer acquisition.
    Liu T; Li Y; Wang X; Ye Q; Li H; Liang Y; She Q; Peng N
    Nucleic Acids Res; 2015 Jan; 43(2):1044-55. PubMed ID: 25567986
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.