BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 31252430)

  • 41. Conserved DNA motifs in the type II-A CRISPR leader region.
    Van Orden MJ; Klein P; Babu K; Najar FZ; Rajan R
    PeerJ; 2017; 5():e3161. PubMed ID: 28392985
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Repeat Size Determination by Two Molecular Rulers in the Type I-E CRISPR Array.
    Goren MG; Doron S; Globus R; Amitai G; Sorek R; Qimron U
    Cell Rep; 2016 Sep; 16(11):2811-2818. PubMed ID: 27626652
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Reproducible Antigen Recognition by the Type I-F CRISPR-Cas System.
    Wiegand T; Semenova E; Shiriaeva A; Fedorov I; Datsenko K; Severinov K; Wiedenheft B
    CRISPR J; 2020 Oct; 3(5):378-387. PubMed ID: 33095052
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cas4-Cas1 Is a Protospacer Adjacent Motif-Processing Factor Mediating Half-Site Spacer Integration During CRISPR Adaptation.
    Kieper SN; Almendros C; Haagsma AC; Barendregt A; Heck AJR; Brouns SJJ
    CRISPR J; 2021 Aug; 4(4):536-548. PubMed ID: 34406043
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Identification of Spacer and Protospacer Sequence Requirements in the Vibrio cholerae Type I-E CRISPR/Cas System.
    Bourgeois J; Lazinski DW; Camilli A
    mSphere; 2020 Nov; 5(6):. PubMed ID: 33208517
    [TBL] [Abstract][Full Text] [Related]  

  • 46. DNA binding specificities of Escherichia coli Cas1-Cas2 integrase drive its recruitment at the CRISPR locus.
    Moch C; Fromant M; Blanquet S; Plateau P
    Nucleic Acids Res; 2017 Mar; 45(5):2714-2723. PubMed ID: 28034956
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Selective loading and processing of prespacers for precise CRISPR adaptation.
    Kim S; Loeff L; Colombo S; Jergic S; Brouns SJJ; Joo C
    Nature; 2020 Mar; 579(7797):141-145. PubMed ID: 32076262
    [TBL] [Abstract][Full Text] [Related]  

  • 48. CRISPR-Cas systems in multicellular cyanobacteria.
    Hou S; Brenes-Álvarez M; Reimann V; Alkhnbashi OS; Backofen R; Muro-Pastor AM; Hess WR
    RNA Biol; 2019 Apr; 16(4):518-529. PubMed ID: 29995583
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Protecting genome integrity during CRISPR immune adaptation.
    Wright AV; Doudna JA
    Nat Struct Mol Biol; 2016 Oct; 23(10):876-883. PubMed ID: 27595346
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Characterizing leader sequences of CRISPR loci.
    Alkhnbashi OS; Shah SA; Garrett RA; Saunders SJ; Costa F; Backofen R
    Bioinformatics; 2016 Sep; 32(17):i576-i585. PubMed ID: 27587677
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Foreign DNA capture during CRISPR-Cas adaptive immunity.
    Nuñez JK; Harrington LB; Kranzusch PJ; Engelman AN; Doudna JA
    Nature; 2015 Nov; 527(7579):535-8. PubMed ID: 26503043
    [TBL] [Abstract][Full Text] [Related]  

  • 52. CRISPR adaptation biases explain preference for acquisition of foreign DNA.
    Levy A; Goren MG; Yosef I; Auster O; Manor M; Amitai G; Edgar R; Qimron U; Sorek R
    Nature; 2015 Apr; 520(7548):505-510. PubMed ID: 25874675
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cas4 Nucleases Define the PAM, Length, and Orientation of DNA Fragments Integrated at CRISPR Loci.
    Shiimori M; Garrett SC; Graveley BR; Terns MP
    Mol Cell; 2018 Jun; 70(5):814-824.e6. PubMed ID: 29883605
    [TBL] [Abstract][Full Text] [Related]  

  • 54. CRISPR Content Correlates with the Pathogenic Potential of Escherichia coli.
    García-Gutiérrez E; Almendros C; Mojica FJ; Guzmán NM; García-Martínez J
    PLoS One; 2015; 10(7):e0131935. PubMed ID: 26136211
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cooperation between Different CRISPR-Cas Types Enables Adaptation in an RNA-Targeting System.
    Hoikkala V; Ravantti J; Díez-Villaseñor C; Tiirola M; Conrad RA; McBride MJ; Moineau S; Sundberg LR
    mBio; 2021 Mar; 12(2):. PubMed ID: 33785624
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Spermidine strongly increases the fidelity of
    Plateau P; Moch C; Blanquet S
    J Biol Chem; 2019 Jul; 294(29):11311-11322. PubMed ID: 31171718
    [TBL] [Abstract][Full Text] [Related]  

  • 57. CRISPR DNA elements controlling site-specific spacer integration and proper repeat length by a Type II CRISPR-Cas system.
    Kim JG; Garrett S; Wei Y; Graveley BR; Terns MP
    Nucleic Acids Res; 2019 Sep; 47(16):8632-8648. PubMed ID: 31392984
    [TBL] [Abstract][Full Text] [Related]  

  • 58. DnaQ exonuclease-like domain of Cas2 promotes spacer integration in a type I-E CRISPR-Cas system.
    Drabavicius G; Sinkunas T; Silanskas A; Gasiunas G; Venclovas Č; Siksnys V
    EMBO Rep; 2018 Jul; 19(7):. PubMed ID: 29891635
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Allosteric regulation in CRISPR/Cas1-Cas2 protospacer acquisition mediated by DNA and Cas2.
    Long C; Dai L; E C; Da LT; Yu J
    Biophys J; 2021 Aug; 120(15):3126-3137. PubMed ID: 34197800
    [TBL] [Abstract][Full Text] [Related]  

  • 60. CRATES: A one-step assembly method for Class 2 CRISPR arrays.
    Liao C; Slotkowski RA; Beisel CL
    Methods Enzymol; 2019; 629():493-511. PubMed ID: 31727255
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.