These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

420 related articles for article (PubMed ID: 31252548)

  • 1. Mechanical Properties of Aluminum Alloys under Low-Cycle Fatigue Loading.
    Zhao X; Li H; Chen T; Cao B; Li X
    Materials (Basel); 2019 Jun; 12(13):. PubMed ID: 31252548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Fatigue properties of dental alloys. 12% Au-Pd-Ag alloy and type III gold alloy].
    Kato H
    Aichi Gakuin Daigaku Shigakkai Shi; 1989 Dec; 27(4):1017-27. PubMed ID: 2489466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Creep-Fatigue Experiment and Life Prediction Study of Piston 2A80 Aluminum Alloy.
    Dong Y; Liu J; Liu Y; Li H; Zhang X; Hu X
    Materials (Basel); 2021 Mar; 14(6):. PubMed ID: 33805819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of the S-N Curve Mean Stress Correction Model in Terms of Fatigue Life Estimation for Random Torsional Loading for Selected Aluminum Alloys.
    Böhm M; Kluger K; Pochwała S; Kupina M
    Materials (Basel); 2020 Jul; 13(13):. PubMed ID: 32635520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flow and fracture behavior of aluminum alloy 6082-T6 at different tensile strain rates and triaxialities.
    Chen X; Peng Y; Peng S; Yao S; Chen C; Xu P
    PLoS One; 2017; 12(7):e0181983. PubMed ID: 28759617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fatigue Strength Estimation Based on Local Mechanical Properties for Aluminum Alloy FSW Joints.
    Sillapasa K; Mutoh Y; Miyashita Y; Seo N
    Materials (Basel); 2017 Feb; 10(2):. PubMed ID: 28772543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Robust Numerical Methodology for Fatigue Damage Evolution Simulation in Composites.
    Russo A; Sellitto A; Curatolo P; Acanfora V; Saputo S; Riccio A
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34204337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fatigue Life of Aluminum Alloys Based on Shear and Hydrostatic Strain.
    Łagoda T; Głowacka K; Kurek A
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33138233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Loading Frequency and Specimen Geometry on High Cycle and Very High Cycle Fatigue Life of a High Strength Titanium Alloy.
    Li Y; Song Q; Feng S; Sun C
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30200556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermo-Mechanical Fatigue Behavior and Resultant Microstructure Evolution in Al-Si 319 and 356 Cast Alloys.
    Liu K; Wang S; Pan L; Chen XG
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multifunctional Hybrid Fiber Composites for Energy Transfer in Future Electric Vehicles.
    Adam TJ; Wierach P; Mertiny P
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of PFM Firing Cycles on the Mechanical Properties, Phase Composition, and Microstructure of Nickel-Chromium Alloy.
    Anwar M; Tripathi A; Kar SK; Sekhar KC
    J Prosthodont; 2015 Dec; 24(8):634-41. PubMed ID: 26215348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micromechanical Modeling of Damage Evolution and Mechanical Behaviors of CF/Al Composites under Transverse and Longitudinal Tensile Loadings.
    Wang Z; Yang S; Du Z; Jiang W; Zhang A; Cai C; Yang W
    Materials (Basel); 2019 Sep; 12(19):. PubMed ID: 31561431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite element modeling of damage accumulation in trabecular bone under cyclic loading.
    Guo XE; McMahon TA; Keaveny TM; Hayes WC; Gibson LJ
    J Biomech; 1994 Feb; 27(2):145-55. PubMed ID: 8132682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of Fatigue Crack Initiation of 7075 Aluminum Alloy by Crystal Plasticity Simulation.
    Shiraiwa T; Briffod F; Enoki M
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fatigue Modeling and Numerical Analysis of Re-Filling Probe Hole of Friction Stir Spot Welded Joints in Aluminum Alloys.
    Yousefi A; Serjouei A; Hedayati R; Bodaghi M
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33922847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low Cycle Fatigue Life Evaluation of Notched Specimens Considering Strain Gradient.
    Qin S; Xiong Z; Ma Y; Zhang K
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32102226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of Fracture Behavior of 6061 Aluminum Alloy Based on GTN Model.
    Ding F; Hong T; Xu Y; Jia X
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Milling Parameters on Mechanical Properties of AA7075 Aluminum under Corrosion Conditions.
    Martín MJ; Cano MJ; Castillo G; Herrera MJ; Martín F
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30227667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low Cycle Fatigue Properties of Sc-Modified AA2519-T62 Extrusion.
    Kosturek R; Śnieżek L; Torzewski J; Wachowski M
    Materials (Basel); 2020 Jan; 13(1):. PubMed ID: 31947946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.