These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 31252582)

  • 1. Optical Planar Waveguide Sensor with Integrated Digitally-Printed Light Coupling-in and Readout Elements.
    Alamán J; López-Valdeolivas M; Alicante R; Sánchez-Somolinos C
    Sensors (Basel); 2019 Jun; 19(13):. PubMed ID: 31252582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrated optical readout using a hybrid plasmonic directional coupler in water.
    Li RZ; Yu Y; Zhang XY; Zhang T
    Appl Opt; 2017 Sep; 56(25):7230-7236. PubMed ID: 29047990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated silicon nitride organic hybrid DFB laser with inkjet printed gain medium.
    Vogelbacher F; Schotter J; Sagmeister M; Kraft J; Zhou X; Huang J; Li M; Jiang KJ; Song Y; Unterrainer K; Hainberger R
    Opt Express; 2019 Sep; 27(20):29350-29356. PubMed ID: 31684671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Filter-free integrated sensor array based on luminescence and absorbance measurements using ring-shaped organic photodiodes.
    Abel T; Sagmeister M; Lamprecht B; Kraker E; Köstler S; Ungerböck B; Mayr T
    Anal Bioanal Chem; 2012 Dec; 404(10):2841-9. PubMed ID: 22706404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymer waveguide grating sensor integrated with a thin-film photodetector.
    Song F; Xiao J; Xie AJ; Seo SW
    J Opt; 2014 Jan; 16(1111):15503. PubMed ID: 24466407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Optical Design of Miniature Infrared Gratings Spectrometer Based on Planar Waveguide].
    Li YY; Fang YH; Li DC; Liu Y
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Mar; 35(3):841-5. PubMed ID: 26117908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectroelectrochemical sensing based on multimode selectivity simultaneously achievable in a single device. 9. Incorporation of planar waveguide technology.
    Ross SE; Seliskar CJ; Heineman WR
    Anal Chem; 2000 Nov; 72(22):5549-55. PubMed ID: 11101230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated planar optical waveguide interferometer biosensors: a comparative review.
    Kozma P; Kehl F; Ehrentreich-Förster E; Stamm C; Bier FF
    Biosens Bioelectron; 2014 Aug; 58():287-307. PubMed ID: 24658026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical-assisted femtosecond laser writing of lab-in-fibers.
    Haque M; Lee KK; Ho S; Fernandes LA; Herman PR
    Lab Chip; 2014 Oct; 14(19):3817-29. PubMed ID: 25120138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal design of a spectral readout type planar waveguide-mode sensor with a monolithic structure.
    Wang X; Fujimaki M; Kato T; Nomura K; Awazu K; Ohki Y
    Opt Express; 2011 Oct; 19(21):20205-13. PubMed ID: 21997031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Research on symmetrical optical waveguide based surface plasmon resonance sensing with spectral interrogation].
    Zhang YL; Liu L; Guo J; Zhang PF; Guo JH; Ma H; He YH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Feb; 35(2):289-92. PubMed ID: 25970880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A planar waveguide optical sensor employing simple light coupling.
    Mayr T; Abel T; Enko B; Borisov S; Konrad C; Köstler S; Lamprecht B; Sax S; List EJ; Klimant I
    Analyst; 2009 Aug; 134(8):1544-7. PubMed ID: 20448918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strong coupling of diffraction coupled plasmons and optical waveguide modes in gold stripe-dielectric nanostructures at telecom wavelengths.
    Thomas PA; Auton GH; Kundys D; Grigorenko AN; Kravets VG
    Sci Rep; 2017 Mar; 7():45196. PubMed ID: 28338060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-period gratings in planar optical waveguides.
    Rastogi V; Chiang KS
    Appl Opt; 2002 Oct; 41(30):6351-5. PubMed ID: 12396184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inkjet printing of upconversion nanoparticles for anti-counterfeit applications.
    You M; Zhong J; Hong Y; Duan Z; Lin M; Xu F
    Nanoscale; 2015 Mar; 7(10):4423-31. PubMed ID: 25613526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light induced fluidic waveguide coupling.
    Zagolla V; Tremblay E; Moser C
    Opt Express; 2012 Nov; 20 Suppl 6():A924-31. PubMed ID: 23187669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light induced fluidic waveguide coupling.
    Zagolla V; Tremblay E; Moser C
    Opt Express; 2012 Nov; 20(23):A924-31. PubMed ID: 23326840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light coupling in a Scotch tape waveguide via an integrated metal diffraction grating.
    Barrios CA; Canalejas-Tejero V
    Opt Lett; 2016 Jan; 41(2):301-4. PubMed ID: 26766699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrical excitation of waveguided surface plasmons by a light-emitting tunneling optical gap antenna.
    Cazier N; Buret M; Uskov AV; Markey L; Arocas J; Colas Des Francs G; Bouhelier A
    Opt Express; 2016 Feb; 24(4):3873-84. PubMed ID: 26907040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From Light Pipes to Substrate-Integrated Hollow Waveguides for Gas Sensing: A Review.
    Barreto DN; Kokoric V; da Silveira Petruci JF; Mizaikoff B
    ACS Meas Sci Au; 2021 Dec; 1(3):97-109. PubMed ID: 36785552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.