These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 31252711)

  • 1. Large-alphabet encoding for higher-rate quantum key distribution.
    Lee C; Bunandar D; Zhang Z; Steinbrecher GR; Ben Dixon P; Wong FNC; Shapiro JH; Hamilton SA; Englund D
    Opt Express; 2019 Jun; 27(13):17539-17549. PubMed ID: 31252711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-healing high-dimensional quantum key distribution using hybrid spin-orbit Bessel states.
    Nape I; Otte E; Vallés A; Rosales-Guzmán C; Cardano F; Denz C; Forbes A
    Opt Express; 2018 Oct; 26(21):26946-26960. PubMed ID: 30469772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Practical high-dimensional quantum key distribution protocol over deployed multicore fiber.
    Zahidy M; Ribezzo D; De Lazzari C; Vagniluca I; Biagi N; Müller R; Occhipinti T; Oxenløwe LK; Galili M; Hayashi T; Cassioli D; Mecozzi A; Antonelli C; Zavatta A; Bacco D
    Nat Commun; 2024 Feb; 15(1):1651. PubMed ID: 38395964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On-chip generation of high-dimensional entangled quantum states and their coherent control.
    Kues M; Reimer C; Roztocki P; Cortés LR; Sciara S; Wetzel B; Zhang Y; Cino A; Chu ST; Little BE; Moss DJ; Caspani L; Azaña J; Morandotti R
    Nature; 2017 Jun; 546(7660):622-626. PubMed ID: 28658228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum key establishment via a multimode fiber.
    Amitonova LV; Tentrup TBH; Vellekoop IM; Pinkse PWH
    Opt Express; 2020 Mar; 28(5):5965-5981. PubMed ID: 32225855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient High-Dimensional Quantum Key Distribution with Hybrid Encoding.
    Jo Y; Park HS; Lee SW; Son W
    Entropy (Basel); 2019 Jan; 21(1):. PubMed ID: 33266796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Semi-Quantum Secret-Sharing Protocol with a High Channel Capacity.
    Tian Y; Bian G; Chang J; Tang Y; Li J; Ye C
    Entropy (Basel); 2023 Apr; 25(5):. PubMed ID: 37238497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental quantum key distribution with uncharacterized sources and projective measurements.
    Zhu JR; Wu WZ; Ji L; Zhang CM; Wang Q
    Opt Lett; 2019 Dec; 44(23):5703-5706. PubMed ID: 31774758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pathways for Entanglement-Based Quantum Communication in the Face of High Noise.
    Hu XM; Zhang C; Guo Y; Wang FX; Xing WB; Huang CX; Liu BH; Huang YF; Li CF; Guo GC; Gao X; Pivoluska M; Huber M
    Phys Rev Lett; 2021 Sep; 127(11):110505. PubMed ID: 34558943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-dimensional single photon based quantum secure direct communication using time and phase mode degrees.
    Ahn B; Park J; Lee J; Lee S
    Sci Rep; 2024 Jan; 14(1):888. PubMed ID: 38195695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-dimensional distributed-phase-reference protocol for quantum key distribution.
    Bacco D; Christensen JB; Castaneda MA; Ding Y; Forchhammer S; Rottwitt K; Oxenløwe LK
    Sci Rep; 2016 Dec; 6():36756. PubMed ID: 28004821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast single-photon detectors and real-time key distillation enable high secret-key-rate quantum key distribution systems.
    Grünenfelder F; Boaron A; Resta GV; Perrenoud M; Rusca D; Barreiro C; Houlmann R; Sax R; Stasi L; El-Khoury S; Hänggi E; Bosshard N; Bussières F; Zbinden H
    Nat Photonics; 2023; 17(5):422-426. PubMed ID: 37162797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental demonstration of graph-state quantum secret sharing.
    Bell BA; Markham D; Herrera-Martí DA; Marin A; Wadsworth WJ; Rarity JG; Tame MS
    Nat Commun; 2014 Nov; 5():5480. PubMed ID: 25413490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large-alphabet time-frequency entangled quantum key distribution by means of time-to-frequency conversion.
    Nunn J; Wright LJ; Söller C; Zhang L; Walmsley IA; Smith BJ
    Opt Express; 2013 Jul; 21(13):15959-73. PubMed ID: 23842382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transmission of O-band wavelength-division-multiplexed heralded photons over a noise-corrupted optical fiber channel.
    Liu MT; Lim HC
    Opt Express; 2013 Dec; 21(25):30358-69. PubMed ID: 24514614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-alphabet quantum key distribution using energy-time entangled bipartite States.
    Ali-Khan I; Broadbent CJ; Howell JC
    Phys Rev Lett; 2007 Feb; 98(6):060503. PubMed ID: 17358925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum cryptography with twisted photons through an outdoor underwater channel.
    Bouchard F; Sit A; Hufnagel F; Abbas A; Zhang Y; Heshami K; Fickler R; Marquardt C; Leuchs G; Boyd RW; Karimi E
    Opt Express; 2018 Aug; 26(17):22563-22573. PubMed ID: 30130947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Full polarization random drift compensation method for quantum communication.
    Ramos MF; Silva NA; Muga NJ; Pinto AN
    Opt Express; 2022 Feb; 30(5):6907-6920. PubMed ID: 35299465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sagnac secret sharing over telecom fiber networks.
    Bogdanski J; Ahrens J; Bourennane M
    Opt Express; 2009 Jan; 17(2):1055-63. PubMed ID: 19158923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental demonstration of memory-enhanced quantum communication.
    Bhaskar MK; Riedinger R; Machielse B; Levonian DS; Nguyen CT; Knall EN; Park H; Englund D; Lončar M; Sukachev DD; Lukin MD
    Nature; 2020 Apr; 580(7801):60-64. PubMed ID: 32238931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.