These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 31252840)

  • 1. Broadband and wide-angle light absorption of organic solar cells based on multiple-depths metal grating.
    Liu X; Wang D; Yang Y; Chen ZH; Fei H; Cao B; Zhang M; Cui Y; Hao Y; Jian A
    Opt Express; 2019 Jun; 27(12):A596-A610. PubMed ID: 31252840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MoS
    Sun Z; Huang F; Fu Y
    Appl Opt; 2020 Aug; 59(22):6671-6676. PubMed ID: 32749370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. UV-visible broadband wide-angle polarization-insensitive absorber based on metal groove structures with multiple depths.
    Wu T; Lai J; Wang S; Li X; Huang Y
    Appl Opt; 2017 Jul; 56(21):5844-5848. PubMed ID: 29047899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical study of a wide-angle polarization-independent ultra-broadband efficient selective metamaterial absorber for near-ideal solar thermal energy conversion.
    Wu D; Liu C; Liu Y; Xu Z; Yu Z; Yu L; Chen L; Ma R; Zhang J; Ye H
    RSC Adv; 2018 Jun; 8(38):21054-21064. PubMed ID: 35539953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmonic Nanostructures for Broadband Solar Absorption Based on Synergistic Effect of Multiple Absorption Mechanisms.
    Su J; Liu D; Sun L; Chen G; Ma C; Zhang Q; Li X
    Nanomaterials (Basel); 2022 Dec; 12(24):. PubMed ID: 36558309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined plasmonic gratings in organic solar cells.
    Shen H; Maes B
    Opt Express; 2011 Nov; 19 Suppl 6():A1202-10. PubMed ID: 22109616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-efficiency, broad-band and wide-angle optical absorption in ultra-thin organic photovoltaic devices.
    Wang W; Hao Y; Cui Y; Tian X; Zhang Y; Wang H; Shi F; Wei B; Huang W
    Opt Express; 2014 Mar; 22 Suppl 2():A376-85. PubMed ID: 24922247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-efficiency, broad-band and wide-angle optical absorption in ultra-thin organic photovoltaic devices.
    Wang W; Hao Y; Cui Y; Tian X; Zhang Y; Wang H; Shi F; Wei B; Huang W
    Opt Express; 2014 Mar; 22(5):A376-85. PubMed ID: 24800293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effective medium analysis of absorption enhancement in short-pitch metal grating incorporated organic solar cells.
    Zhang Y; Cui Y; Wang W; Fung KH; Ji T; Hao Y; Zhu F
    Opt Express; 2016 Oct; 24(22):A1408-A1418. PubMed ID: 27828525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced light trapping based on guided mode resonance effect for thin-film silicon solar cells with two filling-factor gratings.
    Lee YC; Huang CF; Chang JY; Wu ML
    Opt Express; 2008 May; 16(11):7969-75. PubMed ID: 18545506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparing plasmonic and dielectric gratings for absorption enhancement in thin-film organic solar cells.
    Le KQ; Abass A; Maes B; Bienstman P; Alù A
    Opt Express; 2012 Jan; 20(1):A39-50. PubMed ID: 22379677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polarization-independent and omnidirectional nearly perfect absorber with ultra-thin 2D subwavelength metal grating in the visible region.
    Zhou W; Li K; Song C; Hao P; Chi M; Yu M; Wu Y
    Opt Express; 2015 Jun; 23(11):A413-8. PubMed ID: 26072865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region.
    Wu D; Liu C; Liu Y; Yu L; Yu Z; Chen L; Ma R; Ye H
    Opt Lett; 2017 Feb; 42(3):450-453. PubMed ID: 28146499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultraviolet broadband plasmonic absorber with dual visible and near-infrared narrow bands.
    Gao H; Zhou D; Cui W; Liu Z; Liu Y; Jing Z; Peng W
    J Opt Soc Am A Opt Image Sci Vis; 2019 Feb; 36(2):264-269. PubMed ID: 30874104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial.
    Lei L; Li S; Huang H; Tao K; Xu P
    Opt Express; 2018 Mar; 26(5):5686-5693. PubMed ID: 29529770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultra-broadband perfect absorber utilizing refractory materials in metal-insulator composite multilayer stacks.
    Li Y; Liu Z; Zhang H; Tang P; Wu B; Liu G
    Opt Express; 2019 Apr; 27(8):11809-11818. PubMed ID: 31053021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Super absorption of solar energy using a plasmonic nanoparticle based CdTe solar cell.
    Rehman Q; Khan AD; Khan AD; Noman M; Ali H; Rauf A; Ahmad MS
    RSC Adv; 2019 Oct; 9(59):34207-34213. PubMed ID: 35530006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wide-Angle Polarization-Independent Ultra-Broadband Absorber from Visible to Infrared.
    Liu J; Chen W; Zheng JC; Chen YS; Yang CF
    Nanomaterials (Basel); 2019 Dec; 10(1):. PubMed ID: 31861856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of ultra-broadband absorption enhancement in plasmonic absorber by interaction resonance of multi-plasmon modes and Fabry-Perot mode.
    Zeng L; Zhang X; Ye H; Dong H; Zhang H
    Opt Express; 2021 Aug; 29(18):29228-29241. PubMed ID: 34615037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Broadband near-infrared TiO
    Zhu Y; Lan T; Liu P; Yang J
    Appl Opt; 2019 Sep; 58(26):7134-7138. PubMed ID: 31503985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.