These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
267 related articles for article (PubMed ID: 31253148)
21. High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. Xu H; Miao X; Wu Q J Biotechnol; 2006 Dec; 126(4):499-507. PubMed ID: 16772097 [TBL] [Abstract][Full Text] [Related]
22. A rapid and accurate quantification method for real-time dynamic analysis of cellular lipids during microalgal fermentation processes in Chlorella protothecoides with low field nuclear magnetic resonance. Wang T; Liu T; Wang Z; Tian X; Yang Y; Guo M; Chu J; Zhuang Y J Microbiol Methods; 2016 May; 124():13-20. PubMed ID: 26948045 [TBL] [Abstract][Full Text] [Related]
23. Re-Programing Glucose Catabolism in the Microalga Li T; Pang N; He L; Xu Y; Fu X; Tang Y; Shachar-Hill Y; Chen S Biomolecules; 2022 Jul; 12(7):. PubMed ID: 35883494 [TBL] [Abstract][Full Text] [Related]
24. Heterotrophic growth and lipid accumulation of Chlorella protothecoides in whey permeate, a dairy by-product stream, for biofuel production. Espinosa-Gonzalez I; Parashar A; Bressler DC Bioresour Technol; 2014 Mar; 155():170-6. PubMed ID: 24445193 [TBL] [Abstract][Full Text] [Related]
25. Flux balance analysis of Chlorella sp. FC2 IITG under photoautotrophic and heterotrophic growth conditions. Muthuraj M; Palabhanvi B; Misra S; Kumar V; Sivalingavasu K; Das D Photosynth Res; 2013 Nov; 118(1-2):167-79. PubMed ID: 24142039 [TBL] [Abstract][Full Text] [Related]
26. [Effects of glucose on photosynthesis and growth of Chloralla sp. HN08 cells]. Lang X; Liu Z; Xu M; Xie L; Li R Wei Sheng Wu Xue Bao; 2017 Apr; 57(4):550-9. PubMed ID: 29756738 [TBL] [Abstract][Full Text] [Related]
27. Redistribution of metabolic fluxes in Gopalakrishnan S; Baker J; Kristoffersen L; Betenbaugh MJ Metab Eng Commun; 2015 Dec; 2():124-131. PubMed ID: 34150515 [TBL] [Abstract][Full Text] [Related]
28. Kinetic modeling of growth and lipid body induction in Chlorella pyrenoidosa under heterotrophic conditions. Sachdeva N; Kumar GD; Gupta RP; Mathur AS; Manikandan B; Basu B; Tuli DK Bioresour Technol; 2016 Oct; 218():934-43. PubMed ID: 27450124 [TBL] [Abstract][Full Text] [Related]
29. Lipid Production of Heterotrophic Chlorella sp. from Hydrolysate Mixtures of Lipid-Extracted Microalgal Biomass Residues and Molasses. Zheng H; Ma X; Gao Z; Wan Y; Min M; Zhou W; Li Y; Liu Y; Huang H; Chen P; Ruan R Appl Biochem Biotechnol; 2015 Oct; 177(3):662-74. PubMed ID: 26234438 [TBL] [Abstract][Full Text] [Related]
30. Double CO(2) fixation in photosynthesis-fermentation model enhances algal lipid synthesis for biodiesel production. Xiong W; Gao C; Yan D; Wu C; Wu Q Bioresour Technol; 2010 Apr; 101(7):2287-93. PubMed ID: 19963369 [TBL] [Abstract][Full Text] [Related]
31. Enhanced accumulation of starch and total carbohydrates in alginate-immobilized Chlorella spp. induced by Azospirillum brasilense: II. Heterotrophic conditions. Choix FJ; de-Bashan LE; Bashan Y Enzyme Microb Technol; 2012 Oct; 51(5):300-9. PubMed ID: 22975129 [TBL] [Abstract][Full Text] [Related]
32. Enhanced lipid accumulation and biodiesel production by oleaginous Chlorella protothecoides under a structured heterotrophic-iron (II) induction strategy. Li Y; Mu J; Chen D; Xu H; Han F World J Microbiol Biotechnol; 2015 May; 31(5):773-83. PubMed ID: 25724298 [TBL] [Abstract][Full Text] [Related]
33. Genomic Foundation of Starch-to-Lipid Switch in Oleaginous Chlorella spp. Fan J; Ning K; Zeng X; Luo Y; Wang D; Hu J; Li J; Xu H; Huang J; Wan M; Wang W; Zhang D; Shen G; Run C; Liao J; Fang L; Huang S; Jing X; Su X; Wang A; Bai L; Hu Z; Xu J; Li Y Plant Physiol; 2015 Dec; 169(4):2444-61. PubMed ID: 26486592 [TBL] [Abstract][Full Text] [Related]
34. Enhanced biomass and oil production from sugarcane bagasse hydrolysate (SBH) by heterotrophic oleaginous microalga Chlorella protothecoides. Mu J; Li S; Chen D; Xu H; Han F; Feng B; Li Y Bioresour Technol; 2015 Jun; 185():99-105. PubMed ID: 25768412 [TBL] [Abstract][Full Text] [Related]
35. A symbiotic yeast to enhance heterotrophic and mixotrophic cultivation of Chlorella pyrenoidosa using sucrose as the carbon source. Tian YT; Wang X; Cui YH; Wang SK Bioprocess Biosyst Eng; 2020 Dec; 43(12):2243-2252. PubMed ID: 32671549 [TBL] [Abstract][Full Text] [Related]
36. Optimizing culture conditions for heterotrophic-assisted photoautotrophic biofilm growth of Chlorella vulgaris to simultaneously improve microalgae biomass and lipid productivity. Ye Y; Huang Y; Xia A; Fu Q; Liao Q; Zeng W; Zheng Y; Zhu X Bioresour Technol; 2018 Dec; 270():80-87. PubMed ID: 30212777 [TBL] [Abstract][Full Text] [Related]
37. Lipid production for biofuels from hydrolyzate of waste activated sludge by heterotrophic Chlorella protothecoides. Wen Q; Chen Z; Li P; Duan R; Ren N Bioresour Technol; 2013 Sep; 143():695-8. PubMed ID: 23856018 [TBL] [Abstract][Full Text] [Related]
38. Effect of carbon sources on growth and lipid accumulation of newly isolated microalgae cultured under mixotrophic condition. Lin TS; Wu JY Bioresour Technol; 2015 May; 184():100-107. PubMed ID: 25443671 [TBL] [Abstract][Full Text] [Related]
39. Regulation of starch and lipid accumulation in a microalga Chlorella sorokiniana. Li T; Gargouri M; Feng J; Park JJ; Gao D; Miao C; Dong T; Gang DR; Chen S Bioresour Technol; 2015 Mar; 180():250-7. PubMed ID: 25616239 [TBL] [Abstract][Full Text] [Related]
40. High-productivity lipid production using mixed trophic state cultivation of Auxenochlorella (Chlorella) protothecoides. Rismani-Yazdi H; Hampel KH; Lane CD; Kessler BA; White NM; Moats KM; Thomas Allnutt FC Bioprocess Biosyst Eng; 2015 Apr; 38(4):639-50. PubMed ID: 25326061 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]