BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 31253439)

  • 1. Role of vasopressin V1 antagonist in the action of vasopressin on the cooling-evoked hemodynamic perturbations of rats.
    Yang YN; Tsai HL; Lin YC; Liu YP; Tung CS
    Neuropeptides; 2019 Aug; 76():101939. PubMed ID: 31253439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential effects of sympatholytic agents on the power spectrum of rats during the cooling-induced hemodynamic perturbations.
    Yang YN; Tsai HL; Lin YC; Liu YP; Tung CS
    Chin J Physiol; 2019; 62(2):86-92. PubMed ID: 31243179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of Efferent Sympathoadrenal Effects in Cooling-Induced Hemodynamic Perturbations in Rats: An Investigation by Spectrum Analysis.
    Liu YP; Lin YH; Lin CC; Lin YC; Chen YC; Lee PL; Tung CS
    Chin J Physiol; 2015 Oct; 58(5):312-21. PubMed ID: 26387655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of sinoaortic denervation on hemodynamic perturbations of prolonged paradoxical sleep deprivation and rapid cold stress in rats.
    Liu YP; Lin CC; Lin YC; Tsai SH; Tung CS
    J Integr Neurosci; 2022 Apr; 21(3):75. PubMed ID: 35633156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of prolonged paradoxical sleep deprivation with or without acute cold stress on hemodynamic perturbations in rats.
    Yang YN; Liu YP; Hsieh MT; Lin YC; Tung CS
    Stress; 2018 Nov; 21(6):520-527. PubMed ID: 29939104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Portal vein innervation underlying the pressor effect of water ingestion with and without cold stress.
    Tsai SH; Lin JY; Lin YC; Liu YP; Tung CS
    Chin J Physiol; 2020; 63(2):53-59. PubMed ID: 32341230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cooling-evoked hemodynamic perturbations facilitate sympathetic activity with subsequent myogenic vascular oscillations via alpha2-adrenergic receptors.
    Lin YH; Liu YP; Lin YC; Lee PL; Tung CS
    Physiol Res; 2017 Jul; 66(3):449-457. PubMed ID: 28248541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of central vasopressin receptors in the modulation of autonomic cardiovascular controls: a spectral analysis study.
    Milutinović S; Murphy D; Japundzić-Zigon N
    Am J Physiol Regul Integr Comp Physiol; 2006 Dec; 291(6):R1579-91. PubMed ID: 17085750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cardiovascular response to different types of acute stress stimulations.
    Jarczewski J; Furgała A; Winiarska A; Kaczmarczyk M; Poniatowski A
    Folia Med Cracov; 2019; 59(4):95-110. PubMed ID: 31904753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of V1- and V2-vasopressin (AVP) antagonists on the pressor, AVP and atrial natriuretic peptide responses to a hypertonic saline infusion in conscious anephric rats.
    Ota K; Kimura T; Inoue M; Funyu T; Shoji M; Sato K; Ohta M; Yamamoto T; Abe K
    Eur J Endocrinol; 1995 Jul; 133(1):127-32. PubMed ID: 7627334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectral analysis of cardiovascular oscillations in the 7-day regimen of losartan administration with and without cold stress.
    Liu YP; Lin YC; Lin CC; Tsai SH; Tung CS
    Chin J Physiol; 2022; 65(4):171-178. PubMed ID: 36073565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the role of endogenous nitric oxide in myogenic vascular oscillations during cooling-evoked hemodynamic perturbations of rats.
    Lin YH; Liu YP; Lin YC; Lee PL; Tung CS
    Can J Physiol Pharmacol; 2017 Jul; 95(7):803-810. PubMed ID: 28278384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of low and high frequency ranges for heart rate variability and blood pressure variability analyses using pharmacological autonomic blockade with atropine and propranolol in swine.
    Poletto R; Janczak AM; Marchant-Forde RM; Marchant JN; Matthews DL; Dowell CA; Hogan DF; Freeman LJ; Lay DC
    Physiol Behav; 2011 May; 103(2):188-96. PubMed ID: 21281655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of neurohumoral blockade on heart rate and blood pressure responses to haemorrhage in isoflurane anaesthetized rats.
    Ullman J
    Acta Physiol Scand; 2000 Jul; 169(3):189-94. PubMed ID: 10886033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectral analysis of cooling induced hemodynamic perturbations indicates involvement of sympathetic activation and nitric oxide production in rats.
    Liu YP; Lin YH; Chen YC; Lee PL; Tung CS
    Life Sci; 2015 Sep; 136():19-27. PubMed ID: 26141994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pharmacologic responses and spectral analyses of spontaneous fluctuations in heart rate and blood pressure in SHR rats.
    Murphy CA; Sloan RP; Myers MM
    J Auton Nerv Syst; 1991 Dec; 36(3):237-50. PubMed ID: 1787260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of vasopressin in the regional vascular responses evoked in the spontaneously breathing rat by systemic hypoxia.
    Louwerse AM; Marshall JM
    J Physiol; 1993 Oct; 470():463-72. PubMed ID: 8308738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbohydrate ingestion induces differential autonomic dysregulation in normal-tension glaucoma and primary open angle glaucoma.
    Cao L; Graham SL; Pilowsky PM
    PLoS One; 2018; 13(6):e0198432. PubMed ID: 29879162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vasopressin and sympathetic system mediate the cardiovascular effects of the angiotensin II in the bed nucleus of the stria terminalis in rat.
    Nasimi A; Kafami M
    Neurosci Res; 2016 Jul; 108():34-9. PubMed ID: 26820216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of V1 receptors in the action of vasopressin on the baroreflex control of heart rate.
    Luk J; Ajaelo I; Wong V; Wong J; Chang D; Chou L; Reid IA
    Am J Physiol; 1993 Sep; 265(3 Pt 2):R524-9. PubMed ID: 8214142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.