BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

483 related articles for article (PubMed ID: 31253468)

  • 1. Orbitofrontal Circuits Control Multiple Reinforcement-Learning Processes.
    Groman SM; Keistler C; Keip AJ; Hammarlund E; DiLeone RJ; Pittenger C; Lee D; Taylor JR
    Neuron; 2019 Aug; 103(4):734-746.e3. PubMed ID: 31253468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Role of Orbitofrontal-Amygdala Interactions in Updating Action-Outcome Valuations in Macaques.
    Fiuzat EC; Rhodes SE; Murray EA
    J Neurosci; 2017 Mar; 37(9):2463-2470. PubMed ID: 28148725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multifaceted Contributions by Different Regions of the Orbitofrontal and Medial Prefrontal Cortex to Probabilistic Reversal Learning.
    Dalton GL; Wang NY; Phillips AG; Floresco SB
    J Neurosci; 2016 Feb; 36(6):1996-2006. PubMed ID: 26865622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Different time courses for learning-related changes in amygdala and orbitofrontal cortex.
    Morrison SE; Saez A; Lau B; Salzman CD
    Neuron; 2011 Sep; 71(6):1127-40. PubMed ID: 21943608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Basolateral amygdala lesions facilitate reward choices after negative feedback in rats.
    Izquierdo A; Darling C; Manos N; Pozos H; Kim C; Ostrander S; Cazares V; Stepp H; Rudebeck PH
    J Neurosci; 2013 Feb; 33(9):4105-9. PubMed ID: 23447618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Meta-reinforcement learning via orbitofrontal cortex.
    Hattori R; Hedrick NG; Jain A; Chen S; You H; Hattori M; Choi JH; Lim BK; Yasuda R; Komiyama T
    Nat Neurosci; 2023 Dec; 26(12):2182-2191. PubMed ID: 37957318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contrasting Roles for Orbitofrontal Cortex and Amygdala in Credit Assignment and Learning in Macaques.
    Chau BK; Sallet J; Papageorgiou GK; Noonan MP; Bell AH; Walton ME; Rushworth MF
    Neuron; 2015 Sep; 87(5):1106-18. PubMed ID: 26335649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orbitofrontal cortex reflects changes in response-outcome contingencies during probabilistic reversal learning.
    Amodeo LR; McMurray MS; Roitman JD
    Neuroscience; 2017 Mar; 345():27-37. PubMed ID: 26996511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Primate Orbitofrontal Cortex Codes Information Relevant for Managing Explore-Exploit Tradeoffs.
    Costa VD; Averbeck BB
    J Neurosci; 2020 Mar; 40(12):2553-2561. PubMed ID: 32060169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amygdala and orbitofrontal cortex lesions differentially influence choices during object reversal learning.
    Rudebeck PH; Murray EA
    J Neurosci; 2008 Aug; 28(33):8338-43. PubMed ID: 18701696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissociable and Paradoxical Roles of Rat Medial and Lateral Orbitofrontal Cortex in Visual Serial Reversal Learning.
    Hervig ME; Fiddian L; Piilgaard L; Božič T; Blanco-Pozo M; Knudsen C; Olesen SF; Alsiö J; Robbins TW
    Cereb Cortex; 2020 Mar; 30(3):1016-1029. PubMed ID: 31343680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amygdala Contributions to Stimulus-Reward Encoding in the Macaque Medial and Orbital Frontal Cortex during Learning.
    Rudebeck PH; Ripple JA; Mitz AR; Averbeck BB; Murray EA
    J Neurosci; 2017 Feb; 37(8):2186-2202. PubMed ID: 28123082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Orbitofrontal Cortex Signals Expected Outcomes with Predictive Codes When Stable Contingencies Promote the Integration of Reward History.
    Riceberg JS; Shapiro ML
    J Neurosci; 2017 Feb; 37(8):2010-2021. PubMed ID: 28115481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preferential involvement by nucleus accumbens shell in mediating probabilistic learning and reversal shifts.
    Dalton GL; Phillips AG; Floresco SB
    J Neurosci; 2014 Mar; 34(13):4618-26. PubMed ID: 24672007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lesions of the basolateral amygdala and orbitofrontal cortex differentially affect acquisition and performance of a rodent gambling task.
    Zeeb FD; Winstanley CA
    J Neurosci; 2011 Feb; 31(6):2197-204. PubMed ID: 21307256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Value-guided remapping of sensory cortex by lateral orbitofrontal cortex.
    Banerjee A; Parente G; Teutsch J; Lewis C; Voigt FF; Helmchen F
    Nature; 2020 Sep; 585(7824):245-250. PubMed ID: 32884146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of value-based decision making behavior by subregions of the rat prefrontal cortex.
    Verharen JPH; den Ouden HEM; Adan RAH; Vanderschuren LJMJ
    Psychopharmacology (Berl); 2020 May; 237(5):1267-1280. PubMed ID: 32025777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prefrontal Dopamine D
    Jenni NL; Larkin JD; Floresco SB
    J Neurosci; 2017 Jun; 37(26):6200-6213. PubMed ID: 28546312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential involvement of the basolateral amygdala, orbitofrontal cortex, and nucleus accumbens core in the acquisition and use of reward expectancies.
    Ramirez DR; Savage LM
    Behav Neurosci; 2007 Oct; 121(5):896-906. PubMed ID: 17907822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Neural Mechanism of Cue-Outcome Expectancy Generated by the Interaction Between Orbitofrontal Cortex and Amygdala.
    Takei K; Fujita K; Kashimori Y
    Chem Senses; 2020 Jan; 45(1):15-26. PubMed ID: 31599930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.