These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 31253673)

  • 1. Nitrate-Utilizing Microorganisms Resistant to Multiple Metals from the Heavily Contaminated Oak Ridge Reservation.
    Thorgersen MP; Ge X; Poole FL; Price MN; Arkin AP; Adams MWW
    Appl Environ Microbiol; 2019 Sep; 85(17):. PubMed ID: 31253673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molybdenum Availability Is Key to Nitrate Removal in Contaminated Groundwater Environments.
    Thorgersen MP; Lancaster WA; Vaccaro BJ; Poole FL; Rocha AM; Mehlhorn T; Pettenato A; Ray J; Waters RJ; Melnyk RA; Chakraborty R; Hazen TC; Deutschbauer AM; Arkin AP; Adams MW
    Appl Environ Microbiol; 2015 Aug; 81(15):4976-83. PubMed ID: 25979890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic Features and Pervasive Negative Selection in
    Peng M; Wang D; Lui LM; Nielsen T; Tian R; Kempher ML; Tao X; Pan C; Chakraborty R; Deutschbauer AM; Thorgersen MP; Adams MWW; Fields MW; Hazen TC; Arkin AP; Zhou A; Zhou J
    Microbiol Spectr; 2022 Feb; 10(1):e0259121. PubMed ID: 35107332
    [No Abstract]   [Full Text] [Related]  

  • 4. Lateral Gene Transfer in a Heavy Metal-Contaminated-Groundwater Microbial Community.
    Hemme CL; Green SJ; Rishishwar L; Prakash O; Pettenato A; Chakraborty R; Deutschbauer AM; Van Nostrand JD; Wu L; He Z; Jordan IK; Hazen TC; Arkin AP; Kostka JE; Zhou J
    mBio; 2016 Apr; 7(2):e02234-15. PubMed ID: 27048805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iron- and aluminium-induced depletion of molybdenum in acidic environments impedes the nitrogen cycle.
    Ge X; Vaccaro BJ; Thorgersen MP; Poole FL; Majumder EL; Zane GM; De León KB; Lancaster WA; Moon JW; Paradis CJ; von Netzer F; Stahl DA; Adams PD; Arkin AP; Wall JD; Hazen TC; Adams MWW
    Environ Microbiol; 2019 Jan; 21(1):152-163. PubMed ID: 30289197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of a Metal-Resistant
    Ge X; Thorgersen MP; Poole FL; Deutschbauer AM; Chandonia JM; Novichkov PS; Gushgari-Doyle S; Lui LM; Nielsen T; Chakraborty R; Adams PD; Arkin AP; Hazen TC; Adams MWW
    Front Microbiol; 2020; 11():587127. PubMed ID: 33193240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mixed heavy metal stress induces global iron starvation response.
    Goff JL; Chen Y; Thorgersen MP; Hoang LT; Poole FL; Szink EG; Siuzdak G; Petzold CJ; Adams MWW
    ISME J; 2023 Mar; 17(3):382-392. PubMed ID: 36572723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diversity and Distribution of Heavy Metal-Resistant Bacteria in Polluted Sediments of the Araça Bay, São Sebastião (SP), and the Relationship Between Heavy Metals and Organic Matter Concentrations.
    Zampieri Bdel B; Pinto AB; Schultz L; de Oliveira MA; de Oliveira AJ
    Microb Ecol; 2016 Oct; 72(3):582-94. PubMed ID: 27480227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial community dynamics in uranium contaminated subsurface sediments under biostimulated conditions with high nitrate and nickel pressure.
    Moreels D; Crosson G; Garafola C; Monteleone D; Taghavi S; Fitts JP; van der Lelie D
    Environ Sci Pollut Res Int; 2008 Sep; 15(6):481-91. PubMed ID: 18712423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linking bacterial diversity and geochemistry of uranium-contaminated groundwater.
    Cho K; Zholi A; Frabutt D; Flood M; Floyd D; Tiquia SM
    Environ Technol; 2012; 33(13-15):1629-40. PubMed ID: 22988623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fitness factors impacting survival of a subsurface bacterium in contaminated groundwater.
    Thorgersen MP; Goff JL; Trotter VV; Poole Ii FL; Arkin AP; Deutschbauer AM; Adams MWW
    ISME J; 2024 Jan; 18(1):. PubMed ID: 39259908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial Functional Gene Diversity Predicts Groundwater Contamination and Ecosystem Functioning.
    He Z; Zhang P; Wu L; Rocha AM; Tu Q; Shi Z; Wu B; Qin Y; Wang J; Yan Q; Curtis D; Ning D; Van Nostrand JD; Wu L; Yang Y; Elias DA; Watson DB; Adams MWW; Fields MW; Alm EJ; Hazen TC; Adams PD; Arkin AP; Zhou J
    mBio; 2018 Feb; 9(1):. PubMed ID: 29463661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mixed nitrate and metal contamination influences operational speciation of toxic and essential elements.
    Thorgersen MP; Goff JL; Poole FL; Walker KF; Putt AD; Lui LM; Hazen TC; Arkin AP; Adams MWW
    Environ Pollut; 2023 Dec; 338():122674. PubMed ID: 37793542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrate Removal by a Novel Lithoautotrophic Nitrate-Reducing, Iron(II)-Oxidizing Culture Enriched from a Pyrite-Rich Limestone Aquifer.
    Jakus N; Blackwell N; Osenbrück K; Straub D; Byrne JM; Wang Z; Glöckler D; Elsner M; Lueders T; Grathwohl P; Kleindienst S; Kappler A
    Appl Environ Microbiol; 2021 Jul; 87(16):e0046021. PubMed ID: 34085863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Fe(II) on reactivity of heterotrophic denitrifiers in the remediation of nitrate- and Fe(II)-contaminated groundwater.
    Liu Y; Feng C; Sheng Y; Dong S; Chen N; Hao C
    Ecotoxicol Environ Saf; 2018 Dec; 166():437-445. PubMed ID: 30292110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deciphering Microbial Metal Toxicity Responses via Random Bar Code Transposon Site Sequencing and Activity-Based Metabolomics.
    Thorgersen MP; Xue J; Majumder ELW; Trotter VV; Ge X; Poole FL; Owens TK; Lui LM; Nielsen TN; Arkin AP; Deutschbauer AM; Siuzdak G; Adams MWW
    Appl Environ Microbiol; 2021 Oct; 87(21):e0103721. PubMed ID: 34432491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Column experiments to assess the effects of electron donors on the efficiency of in situ precipitation of Zn, Cd, Co and Ni in contaminated groundwater applying the biological sulfate removal technology.
    Geets J; Vanbroekhoven K; Borremans B; Vangronsveld J; Diels L; van der Lelie D
    Environ Sci Pollut Res Int; 2006 Oct; 13(6):362-78. PubMed ID: 17120826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a Markerless Deletion Mutagenesis System in Nitrate-Reducing Bacterium Rhodanobacter denitrificans.
    Tao X; Zhou A; Kempher ML; Liu J; Peng M; Li Y; Michael JP; Chakraborty R; Deutschbauer AM; Arkin AP; Zhou J
    Appl Environ Microbiol; 2022 Jul; 88(14):e0040122. PubMed ID: 35737807
    [No Abstract]   [Full Text] [Related]  

  • 19. Interactions of high-rate nitrate reduction and heavy metal mitigation in iron-carbon-based constructed wetlands for purifying contaminated groundwater.
    Jia L; Liu H; Kong Q; Li M; Wu S; Wu H
    Water Res; 2020 Feb; 169():115285. PubMed ID: 31722275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ethanol-based in situ bioremediation of acidified, nitrate-contaminated groundwater.
    Salminen JM; Petäjäjärvi SJ; Tuominen SM; Nystén TH
    Water Res; 2014 Oct; 63():306-15. PubMed ID: 25019597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.