BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 31253794)

  • 1. Dual pathways of tRNA hydroxylation ensure efficient translation by expanding decoding capability.
    Sakai Y; Kimura S; Suzuki T
    Nat Commun; 2019 Jun; 10(1):2858. PubMed ID: 31253794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and Characterization of Genes Required for 5-Hydroxyuridine Synthesis in Bacillus subtilis and Escherichia coli tRNA.
    Lauhon CT
    J Bacteriol; 2019 Oct; 201(20):. PubMed ID: 31358606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biogenesis and growth phase-dependent alteration of 5-methoxycarbonylmethoxyuridine in tRNA anticodons.
    Sakai Y; Miyauchi K; Kimura S; Suzuki T
    Nucleic Acids Res; 2016 Jan; 44(2):509-23. PubMed ID: 26681692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TusA Is a Versatile Protein That Links Translation Efficiency to Cell Division in Escherichia coli.
    Yildiz T; Leimkühler S
    J Bacteriol; 2021 Mar; 203(7):. PubMed ID: 33526615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TrmL and TusA Are Necessary for rpoS and MiaA Is Required for hfq Expression in Escherichia coli.
    Aubee JI; Olu M; Thompson KM
    Biomolecules; 2017 May; 7(2):. PubMed ID: 28471404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biogenesis and functions of aminocarboxypropyluridine in tRNA.
    Takakura M; Ishiguro K; Akichika S; Miyauchi K; Suzuki T
    Nat Commun; 2019 Dec; 10(1):5542. PubMed ID: 31804502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expanding the genetic code: selection of efficient suppressors of four-base codons and identification of "shifty" four-base codons with a library approach in Escherichia coli.
    Magliery TJ; Anderson JC; Schultz PG
    J Mol Biol; 2001 Mar; 307(3):755-69. PubMed ID: 11273699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymology of tRNA modification in the bacterial MnmEG pathway.
    Armengod ME; Moukadiri I; Prado S; Ruiz-Partida R; Benítez-Páez A; Villarroya M; Lomas R; Garzón MJ; Martínez-Zamora A; Meseguer S; Navarro-González C
    Biochimie; 2012 Jul; 94(7):1510-20. PubMed ID: 22386868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biogenesis and iron-dependency of ribosomal RNA hydroxylation.
    Kimura S; Sakai Y; Ishiguro K; Suzuki T
    Nucleic Acids Res; 2017 Dec; 45(22):12974-12986. PubMed ID: 29069499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ribosome recycling factor and release factor 3 action promotes TnaC-peptidyl-tRNA Dropoff and relieves ribosome stalling during tryptophan induction of tna operon expression in Escherichia coli.
    Gong M; Cruz-Vera LR; Yanofsky C
    J Bacteriol; 2007 Apr; 189(8):3147-55. PubMed ID: 17293419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The difference in the type of codon-anticodon base pairing at the ribosomal P-site is one of the determinants of the translational rate.
    Kato M; Nishikawa K; Uritani M; Miyazaki M; Takemura S
    J Biochem; 1990 Feb; 107(2):242-7. PubMed ID: 2361955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Codon reading by tRNAAla with modified uridine in the wobble position.
    Kothe U; Rodnina MV
    Mol Cell; 2007 Jan; 25(1):167-74. PubMed ID: 17218280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anticodon domain modifications contribute order to tRNA for ribosome-mediated codon binding.
    Vendeix FA; Dziergowska A; Gustilo EM; Graham WD; Sproat B; Malkiewicz A; Agris PF
    Biochemistry; 2008 Jun; 47(23):6117-29. PubMed ID: 18473483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro selection of tRNAs for efficient four-base decoding to incorporate non-natural amino acids into proteins in an Escherichia coli cell-free translation system.
    Taira H; Hohsaka T; Sisido M
    Nucleic Acids Res; 2006; 34(5):1653-62. PubMed ID: 16549877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systematic Evolution and Study of UAGN Decoding tRNAs in a Genomically Recoded Bacteria.
    Wang N; Shang X; Cerny R; Niu W; Guo J
    Sci Rep; 2016 Feb; 6():21898. PubMed ID: 26906548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modifications in the T arm of tRNA globally determine tRNA maturation, function, and cellular fitness.
    Schultz SK; Katanski CD; Halucha M; Peña N; Fahlman RP; Pan T; Kothe U
    Proc Natl Acad Sci U S A; 2024 Jun; 121(26):e2401154121. PubMed ID: 38889150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA-dependent conversion of phosphoserine forms selenocysteine in eukaryotes and archaea.
    Yuan J; Palioura S; Salazar JC; Su D; O'Donoghue P; Hohn MJ; Cardoso AM; Whitman WB; Söll D
    Proc Natl Acad Sci U S A; 2006 Dec; 103(50):18923-7. PubMed ID: 17142313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A protein component at the heart of an RNA machine: the importance of protein l27 for the function of the bacterial ribosome.
    Maguire BA; Beniaminov AD; Ramu H; Mankin AS; Zimmermann RA
    Mol Cell; 2005 Nov; 20(3):427-35. PubMed ID: 16285924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. tRNA-targeting ribonucleases: molecular mechanisms and insights into their physiological roles.
    Ogawa T
    Biosci Biotechnol Biochem; 2016 Jun; 80(6):1037-45. PubMed ID: 26967967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three tRNAs on the ribosome slow translation elongation.
    Choi J; Puglisi JD
    Proc Natl Acad Sci U S A; 2017 Dec; 114(52):13691-13696. PubMed ID: 29229848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.