These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 31253873)
1. Experimental study of the influence of mode excitation on mode instability in high power fiber amplifier. Chu Q; Tao R; Li C; Lin H; Wang Y; Guo C; Wang J; Jing F; Tang C Sci Rep; 2019 Jun; 9(1):9396. PubMed ID: 31253873 [TBL] [Abstract][Full Text] [Related]
2. High-power tandem-pumped fiber amplifier with beam quality maintenance enabled by the confined-doped fiber. Wu H; Li R; Xiao H; Huang L; Yang H; Pan Z; Leng J; Zhou P Opt Express; 2021 Sep; 29(20):31337-31347. PubMed ID: 34615228 [TBL] [Abstract][Full Text] [Related]
3. Suppressing transverse mode instability through multimode excitation in a fiber amplifier. Chen CW; Wisal K; Eliezer Y; Stone AD; Cao H Proc Natl Acad Sci U S A; 2023 May; 120(22):e2217735120. PubMed ID: 37216557 [TBL] [Abstract][Full Text] [Related]
4. Tapered Yb-doped fiber enabled a 4 kW near-single-mode monolithic fiber amplifier. Ye Y; Lin X; Yang B; Xi X; Shi C; Zhang H; Wang X; Li J; Xu X Opt Lett; 2022 May; 47(9):2162-2165. PubMed ID: 35486750 [TBL] [Abstract][Full Text] [Related]
5. 3 kW high OSNR 1030 nm single-mode monolithic fiber amplifier with a 180 pm linewidth. Chu Q; Shu Q; Liu Y; Tao R; Yan D; Lin H; Wang J; Jing F Opt Lett; 2020 Dec; 45(23):6502-6505. PubMed ID: 33258846 [TBL] [Abstract][Full Text] [Related]
6. Experimental investigation of quasi-static mode degradation in a high power large mode area fiber amplifier. Xie L; Zhang C; Liu Y; Li H; Chu Q; Song H; Wu W; Shen B; Li M; Feng X; Huang S; Tao R; Wang J; Zhang X; Zhu H Opt Express; 2021 Mar; 29(6):7986-7997. PubMed ID: 33820254 [TBL] [Abstract][Full Text] [Related]
7. Beam quality degradation of a single-frequency Yb-doped photonic crystal fiber amplifier with low mode instability threshold power. Karow M; Tünnermann H; Neumann J; Kracht D; Wessels P Opt Lett; 2012 Oct; 37(20):4242-4. PubMed ID: 23073424 [TBL] [Abstract][Full Text] [Related]
8. 5 kW monolithic fiber amplifier employing homemade spindle-shaped ytterbium-doped fiber. Zeng L; Pan Z; Xi X; Yang H; Ye Y; Huang L; Zhang H; Wang X; Wang Z; Zhou P; Xu X; Chen J Opt Lett; 2021 Mar; 46(6):1393-1396. PubMed ID: 33720195 [TBL] [Abstract][Full Text] [Related]
9. Mode dynamics in high-power Yb-Raman fiber amplifier. Zhang H; Xiao H; Wang X; Zhou P; Xu X Opt Lett; 2020 Jul; 45(13):3394-3397. PubMed ID: 32630854 [TBL] [Abstract][Full Text] [Related]
10. Static and dynamic mode coupling in a double-pass rod-type fiber amplifier. Lupi JF; Johansen MM; Michieletto M; Lægsgaard J Opt Lett; 2018 Nov; 43(22):5535-5538. PubMed ID: 30439889 [TBL] [Abstract][Full Text] [Related]
11. 1.5 kW ytterbium-doped single-transverse-mode, linearly polarized monolithic fiber master oscillator power amplifier. Huang L; Ma P; Tao R; Shi C; Wang X; Zhou P Appl Opt; 2015 Apr; 54(10):2880-4. PubMed ID: 25967203 [TBL] [Abstract][Full Text] [Related]
13. 3.7 kW monolithic narrow linewidth single mode fiber laser through simultaneously suppressing nonlinear effects and mode instability. Lin H; Tao R; Li C; Wang B; Guo C; Shu Q; Zhao P; Xu L; Wang J; Jing F; Chu Q Opt Express; 2019 Apr; 27(7):9716-9724. PubMed ID: 31045120 [TBL] [Abstract][Full Text] [Related]
14. 2.05 kW all-fiber high-beam-quality fiber amplifier with stimulated Brillouin scattering suppression incorporating a narrow-linewidth fiber-Bragg-grating-stabilized laser diode seed source. Lee J; Lee KH; Jeong H; Park M; Seung JH; Lee JH Appl Opt; 2019 Aug; 58(23):6251-6256. PubMed ID: 31503768 [TBL] [Abstract][Full Text] [Related]
15. Mitigating transverse mode instability in all-fiber laser oscillator and scaling power up to 2.5 kW employing bidirectional-pump scheme. Yang B; Zhang H; Shi C; Wang X; Zhou P; Xu X; Chen J; Liu Z; Lu Q Opt Express; 2016 Nov; 24(24):27828-27835. PubMed ID: 27906351 [TBL] [Abstract][Full Text] [Related]
16. Impact of gamma-ray radiation-induced photodarkening on mode instability degradation of an ytterbium-doped fiber amplifier. Chen YS; Xu HZ; Xing YB; Liao L; Wang YB; Zhang FF; He XL; Li HQ; Peng JG; Yang LY; Dai NL; Li JY Opt Express; 2018 Aug; 26(16):20430-20441. PubMed ID: 30119353 [TBL] [Abstract][Full Text] [Related]
17. 2.19 kW narrow linewidth FBG-based MOPA configuration fiber laser. Huang Y; Yan P; Wang Z; Tian J; Li D; Xiao Q; Gong M Opt Express; 2019 Feb; 27(3):3136-3145. PubMed ID: 30732339 [TBL] [Abstract][Full Text] [Related]
18. 6 kW single mode monolithic fiber laser enabled by effective mitigation of the transverse mode instability. Yang B; Wang P; Zhang H; Xi X; Shi C; Wang X; Xu X Opt Express; 2021 Aug; 29(17):26366-26374. PubMed ID: 34615073 [TBL] [Abstract][Full Text] [Related]
19. Narrow linewidth, single mode 3 kW average power from a directly diode pumped ytterbium-doped low NA fiber amplifier. Beier F; Hupel C; Nold J; Kuhn S; Hein S; Ihring J; Sattler B; Haarlammert N; Schreiber T; Eberhardt R; Tünnermann A Opt Express; 2016 Mar; 24(6):6011-20. PubMed ID: 27136795 [TBL] [Abstract][Full Text] [Related]
20. More than 6 kW near single-mode fiber amplifier based on a bidirectional tandem pumping scheme. Li R; Wu H; Xiao H; Leng J; Huang L; Zhou P Appl Opt; 2022 Aug; 61(23):6804-6810. PubMed ID: 36255759 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]