BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 31254000)

  • 1. Engineered phytases for emerging biotechnological applications beyond animal feeding.
    Herrmann KR; Ruff AJ; Infanzón B; Schwaneberg U
    Appl Microbiol Biotechnol; 2019 Aug; 103(16):6435-6448. PubMed ID: 31254000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of phytate in the gut of pigs--pathway of gastro-intestinal inositol phosphate hydrolysis and enzymes involved.
    Schlemmer U; Jany KD; Berk A; Schulz E; Rechkemmer G
    Arch Tierernahr; 2001; 55(4):255-80. PubMed ID: 12357589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular and biochemical characteristics of β-propeller phytase from marine Pseudomonas sp. BS10-3 and its potential application for animal feed additives.
    Nam SJ; Kim YO; Ko TK; Kang JK; Chun KH; Auh JH; Lee CS; Lee IK; Park S; Oh BC
    J Microbiol Biotechnol; 2014 Oct; 24(10):1413-20. PubMed ID: 25112322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phytase enzymology, applications, and biotechnology.
    Lei XG; Porres JM
    Biotechnol Lett; 2003 Nov; 25(21):1787-94. PubMed ID: 14677699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular characterization, physicochemical properties, known and potential applications of phytases: An overview.
    Rao DE; Rao KV; Reddy TP; Reddy VD
    Crit Rev Biotechnol; 2009; 29(2):182-98. PubMed ID: 19514894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The degradation of phytate by microbial and wheat phytases is dependent on the phytate matrix and the phytase origin.
    Brejnholt SM; Dionisio G; Glitsoe V; Skov LK; Brinch-Pedersen H
    J Sci Food Agric; 2011 Jun; 91(8):1398-405. PubMed ID: 21387323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytase, a new life for an "old" enzyme.
    Lei XG; Weaver JD; Mullaney E; Ullah AH; Azain MJ
    Annu Rev Anim Biosci; 2013 Jan; 1():283-309. PubMed ID: 25387021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular advancements in the development of thermostable phytases.
    Rebello S; Jose L; Sindhu R; Aneesh EM
    Appl Microbiol Biotechnol; 2017 Apr; 101(7):2677-2689. PubMed ID: 28233043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of bifidobacterial phytases in Lactobacillus casei and their application in a food model of whole-grain sourdough bread.
    García-Mantrana I; Yebra MJ; Haros M; Monedero V
    Int J Food Microbiol; 2016 Jan; 216():18-24. PubMed ID: 26384212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacillus phytases: Current status and future prospects.
    Borgi MA; Boudebbouze S; Mkaouar H; Maguin E; Rhimi M
    Bioengineered; 2015; 6(4):233-6. PubMed ID: 25946551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering and optimization of phosphate-responsive phytase expression in Pichia pastoris yeast for phytate hydrolysis.
    Xie Z; Fong WP; Tsang PW
    Enzyme Microb Technol; 2020 Jun; 137():109533. PubMed ID: 32423670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical properties and substrate specificities of alkaline and histidine acid phytases.
    Oh BC; Choi WC; Park S; Kim YO; Oh TK
    Appl Microbiol Biotechnol; 2004 Jan; 63(4):362-72. PubMed ID: 14586576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of fungal phytases in solid state fermentation and potential biotechnological applications.
    Singh B; Pragya ; Tiwari SK; Singh D; Kumar S; Malik V
    World J Microbiol Biotechnol; 2023 Nov; 40(1):22. PubMed ID: 38008864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phytate: impact on environment and human nutrition. A challenge for molecular breeding.
    Bohn L; Meyer AS; Rasmussen SK
    J Zhejiang Univ Sci B; 2008 Mar; 9(3):165-91. PubMed ID: 18357620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytase Production and Development of an Ideal Dephytinization Process for Amelioration of Food Nutrition Using Microbial Phytases.
    Jain J; Singh B
    Appl Biochem Biotechnol; 2017 Apr; 181(4):1485-1495. PubMed ID: 27796873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytase blends for enhanced phosphorous mobilization of deoiled seeds.
    Infanzón B; Herrmann KR; Hofmann I; Willbold S; Ruff AJ; Schwaneberg U
    Enzyme Microb Technol; 2022 Jan; 153():109953. PubMed ID: 34847439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biofactories for the Production of Recombinant Phytases and their Application in the Animal Feed Industry.
    de Souza TPP; da S Mariano RM; Vieira MS; Andrade SFV; Godoi RR; Goncalves AFA; Naves LP; Lima WJN; Goncalves DB; Campos-da-Paz M; Galdino AS
    Recent Pat Biotechnol; 2018; 12(2):113-125. PubMed ID: 28925862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fungal phytases: characteristics and amelioration of nutritional quality and growth of non-ruminants.
    Singh B; Satyanarayana T
    J Anim Physiol Anim Nutr (Berl); 2015 Aug; 99(4):646-60. PubMed ID: 25132310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Avian multiple inositol polyphosphate phosphatase is an active phytase that can be engineered to help ameliorate the planet's "phosphate crisis".
    Cho J; Choi K; Darden T; Reynolds PR; Petitte JN; Shears SB
    J Biotechnol; 2006 Nov; 126(2):248-59. PubMed ID: 16759730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Phytase on in Vitro Hydrolysis of Phytate and the Formation of
    Hirvonen J; Liljavirta J; Saarinen MT; Lehtinen MJ; Ahonen I; Nurminen P
    J Agric Food Chem; 2019 Oct; 67(41):11396-11402. PubMed ID: 31537068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.