These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

545 related articles for article (PubMed ID: 31254043)

  • 61. Cyclical expression of GDNF is required for spermatogonial stem cell homeostasis.
    Sharma M; Braun RE
    Development; 2018 Mar; 145(5):. PubMed ID: 29440301
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Transcription Factor GLIS3: A New and Critical Regulator of Postnatal Stages of Mouse Spermatogenesis.
    Kang HS; Chen LY; Lichti-Kaiser K; Liao G; Gerrish K; Bortner CD; Yao HH; Eddy EM; Jetten AM
    Stem Cells; 2016 Nov; 34(11):2772-2783. PubMed ID: 27350140
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Regulation of spermatogonial stem cell self-renewal in mammals.
    Oatley JM; Brinster RL
    Annu Rev Cell Dev Biol; 2008; 24():263-86. PubMed ID: 18588486
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Regulation of long non-coding RNAs and circular RNAs in spermatogonial stem cells.
    Zhou F; Chen W; Jiang Y; He Z
    Reproduction; 2019 Jul; 158(1):R15-R25. PubMed ID: 30939448
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The RNA-binding protein NANOS2 is required to maintain murine spermatogonial stem cells.
    Sada A; Suzuki A; Suzuki H; Saga Y
    Science; 2009 Sep; 325(5946):1394-8. PubMed ID: 19745153
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Advances in cryopreservation of spermatogonial stem cells and restoration of male fertility.
    Aliakbari F; Yazdekhasti H; Abbasi M; Hajian Monfared M; Baazm M
    Microsc Res Tech; 2016 Feb; 79(2):122-9. PubMed ID: 26643868
    [TBL] [Abstract][Full Text] [Related]  

  • 67. In vitro differentiation of rat spermatogonia into round spermatids in tissue culture.
    Reda A; Hou M; Winton TR; Chapin RE; Söder O; Stukenborg JB
    Mol Hum Reprod; 2016 Sep; 22(9):601-12. PubMed ID: 27430551
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Enrichment of mouse spermatogonial stem cells by melanoma cell adhesion molecule expression.
    Kanatsu-Shinohara M; Morimoto H; Shinohara T
    Biol Reprod; 2012 Jun; 87(6):139. PubMed ID: 23053437
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The mTORC1 component RPTOR is required for maintenance of the foundational spermatogonial stem cell pool in mice†.
    Serra N; Velte EK; Niedenberger BA; Kirsanov O; Geyer CB
    Biol Reprod; 2019 Feb; 100(2):429-439. PubMed ID: 30202948
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Functional differences between GDNF-dependent and FGF2-dependent mouse spermatogonial stem cell self-renewal.
    Takashima S; Kanatsu-Shinohara M; Tanaka T; Morimoto H; Inoue K; Ogonuki N; Jijiwa M; Takahashi M; Ogura A; Shinohara T
    Stem Cell Reports; 2015 Mar; 4(3):489-502. PubMed ID: 25684228
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The POU domain transcription factor POU3F1 is an important intrinsic regulator of GDNF-induced survival and self-renewal of mouse spermatogonial stem cells.
    Wu X; Oatley JM; Oatley MJ; Kaucher AV; Avarbock MR; Brinster RL
    Biol Reprod; 2010 Jun; 82(6):1103-11. PubMed ID: 20181621
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Constitutive activation of CTNNB1 results in a loss of spermatogonial stem cell activity in mice.
    Boyer A; Zhang X; Levasseur A; Abou Nader N; St-Jean G; Nagano MC; Boerboom D
    PLoS One; 2021; 16(5):e0251911. PubMed ID: 34015032
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Fertility of Male Germline Stem Cells Following Spermatogonial Transplantation in Infertile Mouse Models.
    Kanatsu-Shinohara M; Morimoto H; Shinohara T
    Biol Reprod; 2016 May; 94(5):112. PubMed ID: 27053363
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Gdnf signaling pathways within the mammalian spermatogonial stem cell niche.
    Hofmann MC
    Mol Cell Endocrinol; 2008 Jun; 288(1-2):95-103. PubMed ID: 18485583
    [TBL] [Abstract][Full Text] [Related]  

  • 75. PAX7 expression defines germline stem cells in the adult testis.
    Aloisio GM; Nakada Y; Saatcioglu HD; Peña CG; Baker MD; Tarnawa ED; Mukherjee J; Manjunath H; Bugde A; Sengupta AL; Amatruda JF; Cuevas I; Hamra FK; Castrillon DH
    J Clin Invest; 2014 Sep; 124(9):3929-44. PubMed ID: 25133429
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Loss of Gata4 in Sertoli cells impairs the spermatogonial stem cell niche and causes germ cell exhaustion by attenuating chemokine signaling.
    Chen SR; Tang JX; Cheng JM; Li J; Jin C; Li XY; Deng SL; Zhang Y; Wang XX; Liu YX
    Oncotarget; 2015 Nov; 6(35):37012-27. PubMed ID: 26473289
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The identity and fate decision control of spermatogonial stem cells: where is the point of no return?
    Nagano MC; Yeh JR
    Curr Top Dev Biol; 2013; 102():61-95. PubMed ID: 23287030
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Identification of EOMES-expressing spermatogonial stem cells and their regulation by PLZF.
    Sharma M; Srivastava A; Fairfield HE; Bergstrom D; Flynn WF; Braun RE
    Elife; 2019 May; 8():. PubMed ID: 31149899
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The histone demethylase KDM1A is essential for the maintenance and differentiation of spermatogonial stem cells and progenitors.
    Lambrot R; Lafleur C; Kimmins S
    FASEB J; 2015 Nov; 29(11):4402-16. PubMed ID: 26243864
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Purification of GFRα1+ and GFRα1- Spermatogonial Stem Cells Reveals a Niche-Dependent Mechanism for Fate Determination.
    Garbuzov A; Pech MF; Hasegawa K; Sukhwani M; Zhang RJ; Orwig KE; Artandi SE
    Stem Cell Reports; 2018 Feb; 10(2):553-567. PubMed ID: 29337115
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.