These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
490 related articles for article (PubMed ID: 31254044)
1. Mechanisms of PINK1, ubiquitin and Parkin interactions in mitochondrial quality control and beyond. Bayne AN; Trempe JF Cell Mol Life Sci; 2019 Dec; 76(23):4589-4611. PubMed ID: 31254044 [TBL] [Abstract][Full Text] [Related]
2. N-degron-mediated degradation and regulation of mitochondrial PINK1 kinase. Eldeeb MA; Ragheb MA Curr Genet; 2020 Aug; 66(4):693-701. PubMed ID: 32157382 [TBL] [Abstract][Full Text] [Related]
3. Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1)-dependent ubiquitination of endogenous Parkin attenuates mitophagy: study in human primary fibroblasts and induced pluripotent stem cell-derived neurons. Rakovic A; Shurkewitsch K; Seibler P; Grünewald A; Zanon A; Hagenah J; Krainc D; Klein C J Biol Chem; 2013 Jan; 288(4):2223-37. PubMed ID: 23212910 [TBL] [Abstract][Full Text] [Related]
4. The three 'P's of mitophagy: PARKIN, PINK1, and post-translational modifications. Durcan TM; Fon EA Genes Dev; 2015 May; 29(10):989-99. PubMed ID: 25995186 [TBL] [Abstract][Full Text] [Related]
5. Parkin recruitment to impaired mitochondria for nonselective ubiquitylation is facilitated by MITOL. Koyano F; Yamano K; Kosako H; Tanaka K; Matsuda N J Biol Chem; 2019 Jun; 294(26):10300-10314. PubMed ID: 31110043 [No Abstract] [Full Text] [Related]
6. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease. Pickrell AM; Youle RJ Neuron; 2015 Jan; 85(2):257-73. PubMed ID: 25611507 [TBL] [Abstract][Full Text] [Related]
7. The ubiquitin signal and autophagy: an orchestrated dance leading to mitochondrial degradation. Yamano K; Matsuda N; Tanaka K EMBO Rep; 2016 Mar; 17(3):300-16. PubMed ID: 26882551 [TBL] [Abstract][Full Text] [Related]
8. Defining roles of PARKIN and ubiquitin phosphorylation by PINK1 in mitochondrial quality control using a ubiquitin replacement strategy. Ordureau A; Heo JM; Duda DM; Paulo JA; Olszewski JL; Yanishevski D; Rinehart J; Schulman BA; Harper JW Proc Natl Acad Sci U S A; 2015 May; 112(21):6637-42. PubMed ID: 25969509 [TBL] [Abstract][Full Text] [Related]
9. The role of PINK1-Parkin in mitochondrial quality control. Narendra DP; Youle RJ Nat Cell Biol; 2024 Oct; 26(10):1639-1651. PubMed ID: 39358449 [TBL] [Abstract][Full Text] [Related]
10. The PINK1 p.I368N mutation affects protein stability and ubiquitin kinase activity. Ando M; Fiesel FC; Hudec R; Caulfield TR; Ogaki K; Górka-Skoczylas P; Koziorowski D; Friedman A; Chen L; Dawson VL; Dawson TM; Bu G; Ross OA; Wszolek ZK; Springer W Mol Neurodegener; 2017 Apr; 12(1):32. PubMed ID: 28438176 [TBL] [Abstract][Full Text] [Related]
12. The PINK1-Parkin axis: An Overview. Tanaka K Neurosci Res; 2020 Oct; 159():9-15. PubMed ID: 31982458 [TBL] [Abstract][Full Text] [Related]
13. Mechanisms of mitophagy: PINK1, Parkin, USP30 and beyond. Bingol B; Sheng M Free Radic Biol Med; 2016 Nov; 100():210-222. PubMed ID: 27094585 [TBL] [Abstract][Full Text] [Related]
14. New insights into the structure of PINK1 and the mechanism of ubiquitin phosphorylation. Rasool S; Trempe JF Crit Rev Biochem Mol Biol; 2018 Oct; 53(5):515-534. PubMed ID: 30238821 [TBL] [Abstract][Full Text] [Related]
15. Phospho-ubiquitin: upending the PINK-Parkin-ubiquitin cascade. Matsuda N J Biochem; 2016 Apr; 159(4):379-85. PubMed ID: 26839319 [TBL] [Abstract][Full Text] [Related]
16. Phospho-ubiquitin-PARK2 complex as a marker for mitophagy defects. Callegari S; Oeljeklaus S; Warscheid B; Dennerlein S; Thumm M; Rehling P; Dudek J Autophagy; 2017 Jan; 13(1):201-211. PubMed ID: 27846363 [TBL] [Abstract][Full Text] [Related]
17. Mitophagy and Parkinson's disease: the PINK1-parkin link. Deas E; Wood NW; Plun-Favreau H Biochim Biophys Acta; 2011 Apr; 1813(4):623-33. PubMed ID: 20736035 [TBL] [Abstract][Full Text] [Related]
18. Targeting mitochondrial dysfunction: role for PINK1 and Parkin in mitochondrial quality control. Narendra DP; Youle RJ Antioxid Redox Signal; 2011 May; 14(10):1929-38. PubMed ID: 21194381 [TBL] [Abstract][Full Text] [Related]
19. The TOMM machinery is a molecular switch in PINK1 and PARK2/PARKIN-dependent mitochondrial clearance. Bertolin G; Ferrando-Miguel R; Jacoupy M; Traver S; Grenier K; Greene AW; Dauphin A; Waharte F; Bayot A; Salamero J; Lombès A; Bulteau AL; Fon EA; Brice A; Corti O Autophagy; 2013 Nov; 9(11):1801-17. PubMed ID: 24149440 [TBL] [Abstract][Full Text] [Related]
20. Lysine 27 ubiquitination of the mitochondrial transport protein Miro is dependent on serine 65 of the Parkin ubiquitin ligase. Birsa N; Norkett R; Wauer T; Mevissen TE; Wu HC; Foltynie T; Bhatia K; Hirst WD; Komander D; Plun-Favreau H; Kittler JT J Biol Chem; 2014 May; 289(21):14569-82. PubMed ID: 24671417 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]