These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 31254104)

  • 1. In vitro osteogenesis process induced by hybrid nanohydroxyapatite/graphene nanoribbons composites.
    de Vasconcellos LMR; do Prado RF; Sartori EM; Mendonça DBS; Mendonça G; Marciano FR; Lobo AO
    J Mater Sci Mater Med; 2019 Jun; 30(7):81. PubMed ID: 31254104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphene oxide/multi-walled carbon nanotubes as nanofeatured scaffolds for the assisted deposition of nanohydroxyapatite: characterization and biological evaluation.
    Rodrigues BV; Leite NC; Cavalcanti Bd; da Silva NS; Marciano FR; Corat EJ; Webster TJ; Lobo AO
    Int J Nanomedicine; 2016; 11():2569-85. PubMed ID: 27358560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of Graphene-Hydroxyapatite Nanocomposites for Potential Use in Bone Tissue Engineering.
    Ghosh S; Bhagwat T; Kitture R; Thongmee S; Webster TJ
    J Vis Exp; 2022 Jul; (185):. PubMed ID: 35969088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High loads of nano-hydroxyapatite/graphene nanoribbon composites guided bone regeneration using an osteoporotic animal model.
    Oliveira FC; Carvalho JO; Gusmão SBS; Gonçalves LS; Soares Mendes LM; Freitas SAP; Gusmão GOM; Viana BC; Marciano FR; Lobo AO
    Int J Nanomedicine; 2019; 14():865-874. PubMed ID: 30774339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanohydroxyapatite/Graphene Nanoribbons Nanocomposites Induce in Vitro Osteogenesis and Promote in Vivo Bone Neoformation.
    S Medeiros J; Oliveira AM; Carvalho JO; Ricci R; Martins MDCC; Rodrigues BVM; Webster TJ; Viana BC; Vasconcellos LMR; Canevari RA; Marciano FR; Lobo AO
    ACS Biomater Sci Eng; 2018 May; 4(5):1580-1590. PubMed ID: 33445315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rational design of gelatin/nanohydroxyapatite cryogel scaffolds for bone regeneration by introducing chemical and physical cues to enhance osteogenesis of bone marrow mesenchymal stem cells.
    Shalumon KT; Liao HT; Kuo CY; Wong CB; Li CJ; P A M; Chen JP
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109855. PubMed ID: 31500067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assisted deposition of nano-hydroxyapatite onto exfoliated carbon nanotube oxide scaffolds.
    Zanin H; Rosa CM; Eliaz N; May PW; Marciano FR; Lobo AO
    Nanoscale; 2015 Jun; 7(22):10218-32. PubMed ID: 25990927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanohydroxyapatite incorporated electrospun polycaprolactone/polycaprolactone-polyethyleneglycol-polycaprolactone blend scaffold for bone tissue engineering applications.
    Remya KR; Joseph J; Mani S; John A; Varma HK; Ramesh P
    J Biomed Nanotechnol; 2013 Sep; 9(9):1483-94. PubMed ID: 23980497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro and in vivo studies of a novel nanohydroxyapatite/superhydrophilic vertically aligned carbon nanotube nanocomposites.
    Lobo AO; Siqueira IA; das Neves MF; Marciano FR; Corat EJ; Corat MA
    J Mater Sci Mater Med; 2013 Jul; 24(7):1723-32. PubMed ID: 23609000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanohydroxyapatite-reinforced chitosan composite hydrogel for bone tissue repair in vitro and in vivo.
    Dhivya S; Saravanan S; Sastry TP; Selvamurugan N
    J Nanobiotechnology; 2015 Jun; 13():40. PubMed ID: 26065678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards functional 3D-stacked electrospun composite scaffolds of PHBV, silk fibroin and nanohydroxyapatite: Mechanical properties and surface osteogenic differentiation.
    Paşcu EI; Cahill PA; Stokes J; McGuinness GB
    J Biomater Appl; 2016 Apr; 30(9):1334-49. PubMed ID: 26767394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomineralization inspired engineering of nanobiomaterials promoting bone repair.
    Oliveira FC; Carvalho JO; Magalhães LSSM; da Silva JM; Pereira SR; Gomes Júnior AL; Soares LM; Cariman LIC; da Silva RI; Viana BC; Silva-Filho EC; Afewerki S; da Cunha HN; Vega ML; Marciano FR; Lobo AO
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 120():111776. PubMed ID: 33545906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graphene oxide nanoribbons as nanomaterial for bone regeneration: Effects on cytotoxicity, gene expression and bactericidal effect.
    Ricci R; Leite NCS; da-Silva NS; Pacheco-Soares C; Canevari RA; Marciano FR; Webster TJ; Lobo AO
    Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():341-348. PubMed ID: 28575993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PDLLA honeycomb-like scaffolds with a high loading of superhydrophilic graphene/multi-walled carbon nanotubes promote osteoblast in vitro functions and guided in vivo bone regeneration.
    Silva E; Vasconcellos LMR; Rodrigues BVM; Dos Santos DM; Campana-Filho SP; Marciano FR; Webster TJ; Lobo AO
    Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():31-39. PubMed ID: 28183613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of Organic/Inorganic Compatible and Sustainably Bioactive Composites for Effective Bone Regeneration.
    Shao N; Guo J; Guan Y; Zhang H; Li X; Chen X; Zhou D; Huang Y
    Biomacromolecules; 2018 Sep; 19(9):3637-3648. PubMed ID: 30049206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. UHMWPE-MWCNT-nHA based hybrid trilayer nanobiocomposite: Processing approach, physical properties, stem/bone cell functionality, and blood compatibility.
    Naskar S; Panda AK; Jana A; Kanagaraj S; Basu B
    J Biomed Mater Res B Appl Biomater; 2020 Jul; 108(5):2320-2343. PubMed ID: 31994833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrospun silk-BMP-2 scaffolds for bone tissue engineering.
    Li C; Vepari C; Jin HJ; Kim HJ; Kaplan DL
    Biomaterials; 2006 Jun; 27(16):3115-24. PubMed ID: 16458961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Response of human mesenchymal stem cells to intrafibrillar nanohydroxyapatite content and extrafibrillar nanohydroxyapatite in biomimetic chitosan/silk fibroin/nanohydroxyapatite nanofibrous membrane scaffolds.
    Lai GJ; Shalumon KT; Chen JP
    Int J Nanomedicine; 2015; 10():567-84. PubMed ID: 25609962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and characterization of amine functional nano-hydroxyapatite/chitosan bionanocomposite for bone tissue engineering applications.
    Atak BH; Buyuk B; Huysal M; Isik S; Senel M; Metzger W; Cetin G
    Carbohydr Polym; 2017 May; 164():200-213. PubMed ID: 28325318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Segmental bone regeneration using an rhBMP-2-loaded gelatin/nanohydroxyapatite/fibrin scaffold in a rabbit model.
    Liu Y; Lu Y; Tian X; Cui G; Zhao Y; Yang Q; Yu S; Xing G; Zhang B
    Biomaterials; 2009 Oct; 30(31):6276-85. PubMed ID: 19683811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.