These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 3125423)
1. Proline utilization in Saccharomyces cerevisiae: sequence, regulation, and mitochondrial localization of the PUT1 gene product. Wang SS; Brandriss MC Mol Cell Biol; 1987 Dec; 7(12):4431-40. PubMed ID: 3125423 [TBL] [Abstract][Full Text] [Related]
2. Proline utilization in Saccharomyces cerevisiae: analysis of the cloned PUT1 gene. Wang SS; Brandriss MC Mol Cell Biol; 1986 Jul; 6(7):2638-45. PubMed ID: 3537723 [TBL] [Abstract][Full Text] [Related]
3. Amino-terminal fragments of delta 1-pyrroline-5-carboxylate dehydrogenase direct beta-galactosidase to the mitochondrial matrix in Saccharomyces cerevisiae. Brandriss MC; Krzywicki KA Mol Cell Biol; 1986 Oct; 6(10):3502-12. PubMed ID: 3025596 [TBL] [Abstract][Full Text] [Related]
4. Reciprocal regulation of delta 1-pyrroline-5-carboxylate synthetase and proline dehydrogenase genes controls proline levels during and after osmotic stress in plants. Peng Z; Lu Q; Verma DP Mol Gen Genet; 1996 Dec; 253(3):334-41. PubMed ID: 9003320 [TBL] [Abstract][Full Text] [Related]
5. Isolation of constitutive mutations affecting the proline utilization pathway in Saccharomyces cerevisiae and molecular analysis of the PUT3 transcriptional activator. Marczak JE; Brandriss MC Mol Cell Biol; 1989 Nov; 9(11):4696-705. PubMed ID: 2689861 [TBL] [Abstract][Full Text] [Related]
6. Primary structure of the nuclear PUT2 gene involved in the mitochondrial pathway for proline utilization in Saccharomyces cerevisiae. Krzywicki KA; Brandriss MC Mol Cell Biol; 1984 Dec; 4(12):2837-42. PubMed ID: 6098824 [TBL] [Abstract][Full Text] [Related]
7. A nuclear gene encoding mitochondrial proline dehydrogenase, an enzyme involved in proline metabolism, is upregulated by proline but downregulated by dehydration in Arabidopsis. Kiyosue T; Yoshiba Y; Yamaguchi-Shinozaki K; Shinozaki K Plant Cell; 1996 Aug; 8(8):1323-35. PubMed ID: 8776899 [TBL] [Abstract][Full Text] [Related]
8. Roles of URE2 and GLN3 in the proline utilization pathway in Saccharomyces cerevisiae. Xu S; Falvey DA; Brandriss MC Mol Cell Biol; 1995 Apr; 15(4):2321-30. PubMed ID: 7891726 [TBL] [Abstract][Full Text] [Related]
9. The Saccharomyces cerevisiae PUT3 activator protein associates with proline-specific upstream activation sequences. Siddiqui AH; Brandriss MC Mol Cell Biol; 1989 Nov; 9(11):4706-12. PubMed ID: 2689862 [TBL] [Abstract][Full Text] [Related]
10. Structure and regulation of KGD1, the structural gene for yeast alpha-ketoglutarate dehydrogenase. Repetto B; Tzagoloff A Mol Cell Biol; 1989 Jun; 9(6):2695-705. PubMed ID: 2503710 [TBL] [Abstract][Full Text] [Related]
11. Expression of the putA gene encoding proline dehydrogenase from Rhodobacter capsulatus is independent of NtrC regulation but requires an Lrp-like activator protein. Keuntje B; Masepohl B; Klipp W J Bacteriol; 1995 Nov; 177(22):6432-9. PubMed ID: 7592417 [TBL] [Abstract][Full Text] [Related]
12. Regulation of histidine and proline degradation enzymes by amino acid availability in Bacillus subtilis. Atkinson MR; Wray LV; Fisher SH J Bacteriol; 1990 Sep; 172(9):4758-65. PubMed ID: 2118500 [TBL] [Abstract][Full Text] [Related]
13. Evidence for positive regulation of the proline utilization pathway in Saccharomyces cerevisiae. Brandriss MC Genetics; 1987 Nov; 117(3):429-35. PubMed ID: 3121434 [TBL] [Abstract][Full Text] [Related]
14. Proline accumulation by mutation or disruption of the proline oxidase gene improves resistance to freezing and desiccation stresses in Saccharomyces cerevisiae. Takagi H; Sakai K; Morida K; Nakamori S FEMS Microbiol Lett; 2000 Mar; 184(1):103-8. PubMed ID: 10689174 [TBL] [Abstract][Full Text] [Related]
15. Genetics and physiology of proline utilization in Saccharomyces cerevisiae: enzyme induction by proline. Brandriss MC; Magasanik B J Bacteriol; 1979 Nov; 140(2):498-503. PubMed ID: 387737 [TBL] [Abstract][Full Text] [Related]
16. Mutation of a phosphorylatable residue in Put3p affects the magnitude of rapamycin-induced PUT1 activation in a Gat1p-dependent manner. Leverentz MK; Campbell RN; Connolly Y; Whetton AD; Reece RJ J Biol Chem; 2009 Sep; 284(36):24115-22. PubMed ID: 19574222 [TBL] [Abstract][Full Text] [Related]
17. Isolation, DNA sequence analysis, and mutagenesis of a proline dehydrogenase gene (putA) from Bradyrhizobium japonicum. Straub PF; Reynolds PH; Althomsons S; Mett V; Zhu Y; Shearer G; Kohl DH Appl Environ Microbiol; 1996 Jan; 62(1):221-9. PubMed ID: 8572700 [TBL] [Abstract][Full Text] [Related]
18. Improving freeze-tolerance of baker's yeast through seamless gene deletion of NTH1 and PUT1. Dong J; Chen D; Wang G; Zhang C; Du L; Liu S; Zhao Y; Xiao D J Ind Microbiol Biotechnol; 2016 Jun; 43(6):817-28. PubMed ID: 26965428 [TBL] [Abstract][Full Text] [Related]
19. Structure and regulation of KGD2, the structural gene for yeast dihydrolipoyl transsuccinylase. Repetto B; Tzagoloff A Mol Cell Biol; 1990 Aug; 10(8):4221-32. PubMed ID: 2115121 [TBL] [Abstract][Full Text] [Related]
20. Transcription of the AAC1 gene encoding an isoform of mitochondrial ADP/ATP carrier in Saccharomyces cerevisiae is regulated by oxygen in a heme-independent manner. Gavurníková G; Sabova L; Kissová I; Haviernik P; Kolarov J Eur J Biochem; 1996 Aug; 239(3):759-63. PubMed ID: 8774724 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]