These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 31254383)

  • 1. Metabolism of Odorant Molecules in Human Nasal/Oral Cavity Affects the Odorant Perception.
    Ijichi C; Wakabayashi H; Sugiyama S; Ihara Y; Nogi Y; Nagashima A; Ihara S; Niimura Y; Shimizu Y; Kondo K; Touhara K
    Chem Senses; 2019 Sep; 44(7):465-481. PubMed ID: 31254383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatic conversion of odorants in nasal mucus affects olfactory glomerular activation patterns and odor perception.
    Nagashima A; Touhara K
    J Neurosci; 2010 Dec; 30(48):16391-8. PubMed ID: 21123585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A mass transport model of olfaction.
    Hahn I; Scherer PW; Mozell MM
    J Theor Biol; 1994 Mar; 167(2):115-28. PubMed ID: 8207942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time In Vitro Monitoring of Odorant Receptor Activation by an Odorant in the Vapor Phase.
    de March CA; Fukutani Y; Vihani A; Kida H; Matsunami H
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31081824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A numerical model of nasal odorant transport for the analysis of human olfaction.
    Keyhani K; Scherer PW; Mozell MM
    J Theor Biol; 1997 Jun; 186(3):279-301. PubMed ID: 9219668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nasal Odorant Competitive Metabolism Is Involved in the Human Olfactory Process.
    Robert-Hazotte A; Faure P; Ménétrier F; Folia M; Schwartz M; Le Quéré JL; Neiers F; Thomas-Danguin T; Heydel JM
    J Agric Food Chem; 2022 Jul; 70(27):8385-8394. PubMed ID: 35776896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ex vivo real-time monitoring of volatile metabolites resulting from nasal odorant metabolism.
    Robert-Hazotte A; Schoumacker R; Semon E; Briand L; Guichard E; Le Quéré JL; Faure P; Heydel JM
    Sci Rep; 2019 Feb; 9(1):2492. PubMed ID: 30792537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nasal mucus glutathione transferase activity and impact on olfactory perception and neonatal behavior.
    Robert-Hazotte A; Faure P; Neiers F; Potin C; Artur Y; Coureaud G; Heydel JM
    Sci Rep; 2019 Feb; 9(1):3104. PubMed ID: 30816217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. OR2M3: A Highly Specific and Narrowly Tuned Human Odorant Receptor for the Sensitive Detection of Onion Key Food Odorant 3-Mercapto-2-methylpentan-1-ol.
    Noe F; Polster J; Geithe C; Kotthoff M; Schieberle P; Krautwurst D
    Chem Senses; 2017 Mar; 42(3):195-210. PubMed ID: 27916748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nasal odorant metabolism: enzymes, activity and function in olfaction.
    Heydel JM; Faure P; Neiers F
    Drug Metab Rev; 2019 May; 51(2):224-245. PubMed ID: 31203698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A computational study of odorant transport and deposition in the canine nasal cavity: implications for olfaction.
    Lawson MJ; Craven BA; Paterson EG; Settles GS
    Chem Senses; 2012 Jul; 37(6):553-66. PubMed ID: 22473924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental and numerical determination of odorant solubility in nasal and olfactory mucosa.
    Kurtz DB; Zhao K; Hornung DE; Scherer P
    Chem Senses; 2004 Nov; 29(9):763-73. PubMed ID: 15574812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence of an odorant-binding protein in the human olfactory mucus: location, structural characterization, and odorant-binding properties.
    Briand L; Eloit C; Nespoulous C; Bézirard V; Huet JC; Henry C; Blon F; Trotier D; Pernollet JC
    Biochemistry; 2002 Jun; 41(23):7241-52. PubMed ID: 12044155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combining In Vivo and In Vitro Approaches To Identify Human Odorant Receptors Responsive to Food Odorants.
    Armelin-Correa LM; Malnic B
    J Agric Food Chem; 2018 Mar; 66(10):2214-2218. PubMed ID: 28054485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Odorant metabolism of the olfactory cleft mucus in idiopathic olfactory impairment patients and healthy volunteers.
    Ijichi C; Wakabayashi H; Sugiyama S; Hayashi K; Ihara Y; Nishijima H; Touhara K; Kondo K
    Int Forum Allergy Rhinol; 2022 Mar; 12(3):293-301. PubMed ID: 34637187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of a Human Respiratory Mucosa Model to Study Odorant Metabolism.
    Mérignac-Lacombe J; Kornbausch N; Sivarajan R; Boichot V; Berg K; Oberwinkler H; Saliba AE; Loos HM; Ehret Kasemo T; Scherzad A; Bodem J; Buettner A; Neiers F; Erhard F; Hackenberg S; Heydel JM; Steinke M
    J Agric Food Chem; 2024 Jun; 72(22):12696-12706. PubMed ID: 38775624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Broadly Tuned Odorant Receptor OR1A1 is Highly Selective for 3-Methyl-2,4-nonanedione, a Key Food Odorant in Aged Wines, Tea, and Other Foods.
    Geithe C; Noe F; Kreissl J; Krautwurst D
    Chem Senses; 2017 Mar; 42(3):181-193. PubMed ID: 27916747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporal processing of olfactory stimuli during retronasal perception.
    Wilkes FJ; Laing DG; Hutchinson I; Jinks AL; Monteleone E
    Behav Brain Res; 2009 Jun; 200(1):68-75. PubMed ID: 19162085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. OMP gene deletion results in an alteration in odorant-induced mucosal activity patterns.
    Youngentob SL; Kent PF; Margolis FL
    J Neurophysiol; 2003 Dec; 90(6):3864-73. PubMed ID: 12917392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Is asparagine deamidation in the porcine odorant-binding protein related to the odor molecules binding?
    Mamone G; D'Auria S
    Protein Pept Lett; 2008; 15(9):895-9. PubMed ID: 18991763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.