BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 31254881)

  • 21. Decomposition of β-N-methylamino-L-alanine (BMAA) and 2,4-diaminobutyric acid (DAB) during chlorination and consequent disinfection byproducts formation.
    Cao Y; Hu S; Gong T; Xian Q; Xu B
    Water Res; 2019 Aug; 159():365-374. PubMed ID: 31112889
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Correlation between SUVA and DBP formation during chlorination and chloramination of NOM fractions from different sources.
    Hua G; Reckhow DA; Abusallout I
    Chemosphere; 2015 Jul; 130():82-9. PubMed ID: 25862949
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Disinfection by-product formation and toxicity evaluation for chlorination with powered activated carbon.
    Huang X; Yu Y; Chen H; Liang H; Geng M; Shi B
    Water Res; 2021 Oct; 205():117660. PubMed ID: 34563928
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evidence-based analysis on the toxicity of disinfection byproducts in vivo and in vitro for disinfection selection.
    Dong F; Chen J; Li C; Ma X; Jiang J; Lin Q; Lin C; Diao H
    Water Res; 2019 Nov; 165():114976. PubMed ID: 31445306
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Formation and toxicity of brominated disinfection byproducts during chlorination and chloramination of water: a review.
    Sharma VK; Zboril R; McDonald TJ
    J Environ Sci Health B; 2014; 49(3):212-28. PubMed ID: 24380621
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Does Granular Activated Carbon with Chlorination Produce Safer Drinking Water? From Disinfection Byproducts and Total Organic Halogen to Calculated Toxicity.
    Cuthbertson AA; Kimura SY; Liberatore HK; Summers RS; Knappe DRU; Stanford BD; Maness JC; Mulhern RE; Selbes M; Richardson SD
    Environ Sci Technol; 2019 May; 53(10):5987-5999. PubMed ID: 31038939
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DBP alteration from NOM and model compounds after UV/persulfate treatment with post chlorination.
    Hua Z; Kong X; Hou S; Zou S; Xu X; Huang H; Fang J
    Water Res; 2019 Jul; 158():237-245. PubMed ID: 31039453
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characteristics and disinfection byproducts formation potential of dissolved organic matter released from fast-growing Eucalyptus urophylla leaves.
    Liu L; Tang Y; Yang W; Li W; Fang B; Zhong Y; Yin M; Chen Y; Yang H
    Chemosphere; 2020 Jun; 248():126017. PubMed ID: 32035383
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Disinfection by-products formation and precursors transformation during chlorination and chloramination of highly-polluted source water: significance of ammonia.
    Tian C; Liu R; Liu H; Qu J
    Water Res; 2013 Oct; 47(15):5901-10. PubMed ID: 23911224
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulated and unregulated halogenated disinfection byproduct formation from chlorination of saline groundwater.
    Szczuka A; Parker KM; Harvey C; Hayes E; Vengosh A; Mitch WA
    Water Res; 2017 Oct; 122():633-644. PubMed ID: 28646800
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of algal organic matter as precursors for carbonaceous and nitrogenous disinfection byproducts formation: Comparison with natural organic matter.
    Wang XX; Liu BM; Lu MF; Li YP; Jiang YY; Zhao MX; Huang ZX; Pan Y; Miao HF; Ruan WQ
    J Environ Manage; 2021 Mar; 282():111951. PubMed ID: 33461088
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of ion species on the disinfection byproduct formation in artificial and real water.
    Zhang M; Ma H; Wang H; Du T; Liu M; Wang Y; Zhang T; Li Y
    Chemosphere; 2019 Feb; 217():706-714. PubMed ID: 30448750
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Oxidative treatment of NOM by selective oxidants in drinking water treatment and its impact on DBP formation in postchlorination.
    Li J; Song Y; Jiang J; Yang T; Cao Y
    Sci Total Environ; 2023 Feb; 858(Pt 2):159908. PubMed ID: 36336058
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Photodecomposition of iodinated contrast media and subsequent formation of toxic iodinated moieties during final disinfection with chlorinated oxidants.
    Allard S; Criquet J; Prunier A; Falantin C; Le Person A; Yat-Man Tang J; Croué JP
    Water Res; 2016 Oct; 103():453-461. PubMed ID: 27498253
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Disinfection byproduct formation in reverse-osmosis concentrated and lyophilized natural organic matter from a drinking water source.
    Pressman JG; McCurry DL; Parvez S; Rice GE; Teuschler LK; Miltner RJ; Speth TF
    Water Res; 2012 Oct; 46(16):5343-54. PubMed ID: 22846256
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Factors affecting the formation of disinfection by-products during chlorination and chloramination of secondary effluent for the production of high quality recycled water.
    Doederer K; Gernjak W; Weinberg HS; Farré MJ
    Water Res; 2014 Jan; 48():218-28. PubMed ID: 24095593
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nontargeted identification of chlorinated disinfection byproducts formed from natural organic matter using Orbitrap mass spectrometry and a halogen extraction code.
    Lu Y; Song ZM; Wang C; Liang JK; Hu Q; Wu QY
    J Hazard Mater; 2021 Aug; 416():126198. PubMed ID: 34492962
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of the key biochemical component contributing to disinfection byproducts in chlorinating algogenic organic matter.
    Ma L; Peng F; Dong Q; Li H; Yang Z
    Chemosphere; 2022 Jun; 296():133998. PubMed ID: 35181429
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Detection, formation and occurrence of 13 new polar phenolic chlorinated and brominated disinfection byproducts in drinking water.
    Pan Y; Wang Y; Li A; Xu B; Xian Q; Shuang C; Shi P; Zhou Q
    Water Res; 2017 Apr; 112():129-136. PubMed ID: 28153699
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Formation, distribution, and speciation of DBPs (THMs, HAAs, ClO
    Padhi RK; Subramanian S; Satpathy KK
    Chemosphere; 2019 Mar; 218():540-550. PubMed ID: 30500715
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.