These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 31254933)

  • 1. PEGylated immunoliposome-loaded endoglin single-chain antibody enhances anti-tumor capacity of porcine α1,3GT gene.
    Huang Y; Huang Y; He J; Wang H; Luo Y; Li Y; Liu J; Zhong L; Zhao Y
    Biomaterials; 2019 Oct; 217():119231. PubMed ID: 31254933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characteristics of α-Gal epitope, anti-Gal antibody, α1,3 galactosyltransferase and its clinical exploitation (Review).
    Huai G; Qi P; Yang H; Wang Y
    Int J Mol Med; 2016 Jan; 37(1):11-20. PubMed ID: 26531137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bispecific single-chain diabody-immunoliposomes targeting endoglin (CD105) and fibroblast activation protein (FAP) simultaneously.
    Rabenhold M; Steiniger F; Fahr A; Kontermann RE; Rüger R
    J Control Release; 2015 Mar; 201():56-67. PubMed ID: 25617725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Possible role of a cell surface carbohydrate in evolution of resistance to viral infections in old world primates.
    Rodriguez IA; Welsh RM
    J Virol; 2013 Aug; 87(15):8317-26. PubMed ID: 23740988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of xenogeneic response in porcine endothelium using RNA interference.
    Zhu M; Wang SS; Xia ZX; Cao RH; Chen D; Huang YB; Liu B; Chen ZK; Chen S
    Transplantation; 2005 Feb; 79(3):289-96. PubMed ID: 15699758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. α1,3Galactosyltransferase knockout pigs produce the natural anti-Gal antibody and simulate the evolutionary appearance of this antibody in primates.
    Galili U
    Xenotransplantation; 2013; 20(5):267-76. PubMed ID: 23968556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced cytotoxic T lymphocytes recruitment targeting tumor vasculatures by endoglin aptamer and IP-10 plasmid presenting liposome-based nanocarriers.
    Yang X; Zhao J; Duan S; Hou X; Li X; Hu Z; Tang Z; Mo F; Lu X
    Theranostics; 2019; 9(14):4066-4083. PubMed ID: 31281532
    [No Abstract]   [Full Text] [Related]  

  • 8. Single chain anti-c-Met antibody conjugated nanoparticles for in vivo tumor-targeted imaging and drug delivery.
    Lu RM; Chang YL; Chen MS; Wu HC
    Biomaterials; 2011 Apr; 32(12):3265-74. PubMed ID: 21306768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human endoglin-CD3 bispecific T cell engager antibody induces anti-tumor effect
    Zhong L; Shi W; Gan L; Liu X; Huo Y; Wu P; Zhang Z; Wu T; Peng H; Huang Y; Zhao Y; Yuan Y; Deng Z; Tang H
    Theranostics; 2021; 11(13):6393-6406. PubMed ID: 33995664
    [No Abstract]   [Full Text] [Related]  

  • 10. [The role RNA interference of alpha1, 3GT plays in resistance to complement mediated cytotoxicity of porcine endothelial cells].
    Zhu M; Xia ZX; Wang SS; Cao RH; Qi HG; Chen D; Liu B; Zhang WJ; Chen S
    Zhonghua Yi Xue Za Zhi; 2005 Apr; 85(16):1133-6. PubMed ID: 16029575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facilitation of endoglin-targeting cancer therapy by development/utilization of a novel genetically engineered mouse model expressing humanized endoglin (CD105).
    Toi H; Tsujie M; Haruta Y; Fujita K; Duzen J; Seon BK
    Int J Cancer; 2015 Jan; 136(2):452-61. PubMed ID: 24866768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of alpha-gal epitopes on HeLa cells transduced with adenovirus containing alpha1,3galactosyltransferase cDNA.
    Deriy L; Chen ZC; Gao GP; Galili U
    Glycobiology; 2002 Feb; 12(2):135-44. PubMed ID: 11886847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The alpha-gal epitope and the anti-Gal antibody in xenotransplantation and in cancer immunotherapy.
    Galili U
    Immunol Cell Biol; 2005 Dec; 83(6):674-86. PubMed ID: 16266320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic Fe₃ O ₄ nanoparticles grafted with single-chain antibody (scFv) and docetaxel loaded β-cyclodextrin potential for ovarian cancer dual-targeting therapy.
    Huang X; Yi C; Fan Y; Zhang Y; Zhao L; Liang Z; Pan J
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():325-32. PubMed ID: 25063125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of alpha 1,3-galactosyltransferase-deficient pigs.
    Phelps CJ; Koike C; Vaught TD; Boone J; Wells KD; Chen SH; Ball S; Specht SM; Polejaeva IA; Monahan JA; Jobst PM; Sharma SB; Lamborn AE; Garst AS; Moore M; Demetris AJ; Rudert WA; Bottino R; Bertera S; Trucco M; Starzl TE; Dai Y; Ayares DL
    Science; 2003 Jan; 299(5605):411-4. PubMed ID: 12493821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduction of alpha-galactosyl xenoantigen by expression of endo-beta-galactosidase C in pig endothelial cells.
    Ogawa H; Kobayashi T; Yokoyama I; Nagatani N; Mizuno M; Yoshida J; Kadomatsu K; Muramatsu H; Nakao A; Muramatsu T
    Xenotransplantation; 2002 Jul; 9(4):290-6. PubMed ID: 12060465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intracellular expression in pig cells of anti-alpha1,3galactosyltransferase single-chain FV antibodies reduces Gal alpha1,3Gal expression and inhibits cytotoxicity mediated by anti-Gal xenoantibodies.
    Vanhove B; Charreau B; Cassard A; Pourcel C; Soulillou JP
    Transplantation; 1998 Dec; 66(11):1477-85. PubMed ID: 9869089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induction of B-cell tolerance by retroviral gene therapy.
    Bracy JL; Iacomini J
    Blood; 2000 Nov; 96(9):3008-15. PubMed ID: 11049978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibiting angiogenesis with human single-chain variable fragment antibody targeting VEGF.
    Hosseini H; Rajabibazl M; Ebrahimizadeh W; Dehbidi GR
    Microvasc Res; 2015 Jan; 97():13-8. PubMed ID: 25250517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeted disruption of the alpha1,3-galactosyltransferase gene in cloned pigs.
    Dai Y; Vaught TD; Boone J; Chen SH; Phelps CJ; Ball S; Monahan JA; Jobst PM; McCreath KJ; Lamborn AE; Cowell-Lucero JL; Wells KD; Colman A; Polejaeva IA; Ayares DL
    Nat Biotechnol; 2002 Mar; 20(3):251-5. PubMed ID: 11875425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.