These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Reduced quantum dynamics with arbitrary bath spectral densities: hierarchical equations of motion based on several different bath decomposition schemes. Liu H; Zhu L; Bai S; Shi Q J Chem Phys; 2014 Apr; 140(13):134106. PubMed ID: 24712779 [TBL] [Abstract][Full Text] [Related]
4. Hierarchical Equations of Motion for Quantum Chemical Dynamics: Recent Methodology Developments and Applications. Bai S; Zhang S; Huang C; Shi Q Acc Chem Res; 2024 Oct; ():. PubMed ID: 39381954 [TBL] [Abstract][Full Text] [Related]
5. Hierarchical equations of motion method based on Fano spectrum decomposition for low temperature environments. Zhang HD; Cui L; Gong H; Xu RX; Zheng X; Yan Y J Chem Phys; 2020 Feb; 152(6):064107. PubMed ID: 32061227 [TBL] [Abstract][Full Text] [Related]
6. A low-temperature quantum Fokker-Planck equation that improves the numerical stability of the hierarchical equations of motion for the Brownian oscillator spectral density. Li T; Yan Y; Shi Q J Chem Phys; 2022 Feb; 156(6):064107. PubMed ID: 35168335 [TBL] [Abstract][Full Text] [Related]
7. Tree tensor network state approach for solving hierarchical equations of motion. Ke Y J Chem Phys; 2023 Jun; 158(21):. PubMed ID: 37259990 [TBL] [Abstract][Full Text] [Related]
8. High accuracy exponential decomposition of bath correlation functions for arbitrary and structured spectral densities: Emerging methodologies and new approaches. Takahashi H; Rudge S; Kaspar C; Thoss M; Borrelli R J Chem Phys; 2024 May; 160(20):. PubMed ID: 38775742 [TBL] [Abstract][Full Text] [Related]
9. Managing temperature in open quantum systems strongly coupled with structured environments. Le Dé B; Jaouadi A; Mangaud E; Chin AW; Desouter-Lecomte M J Chem Phys; 2024 Jun; 160(24):. PubMed ID: 38913841 [TBL] [Abstract][Full Text] [Related]
10. A unified stochastic formulation of dissipative quantum dynamics. I. Generalized hierarchical equations. Hsieh CY; Cao J J Chem Phys; 2018 Jan; 148(1):014103. PubMed ID: 29306296 [TBL] [Abstract][Full Text] [Related]
11. Extended hierarchy equation of motion for the spin-boson model. Tang Z; Ouyang X; Gong Z; Wang H; Wu J J Chem Phys; 2015 Dec; 143(22):224112. PubMed ID: 26671363 [TBL] [Abstract][Full Text] [Related]
12. Generalization of the hierarchical equations of motion theory for efficient calculations with arbitrary correlation functions. Ikeda T; Scholes GD J Chem Phys; 2020 May; 152(20):204101. PubMed ID: 32486654 [TBL] [Abstract][Full Text] [Related]
13. A simple improved low temperature correction for the hierarchical equations of motion. Fay TP J Chem Phys; 2022 Aug; 157(5):054108. PubMed ID: 35933192 [TBL] [Abstract][Full Text] [Related]
14. Reduced hierarchical equations of motion in real and imaginary time: Correlated initial states and thermodynamic quantities. Tanimura Y J Chem Phys; 2014 Jul; 141(4):044114. PubMed ID: 25084888 [TBL] [Abstract][Full Text] [Related]
15. Numerically "exact" approach to open quantum dynamics: The hierarchical equations of motion (HEOM). Tanimura Y J Chem Phys; 2020 Jul; 153(2):020901. PubMed ID: 32668942 [TBL] [Abstract][Full Text] [Related]
16. Explicit system-bath correlation calculated using the hierarchical equations of motion method. Zhu L; Liu H; Xie W; Shi Q J Chem Phys; 2012 Nov; 137(19):194106. PubMed ID: 23181293 [TBL] [Abstract][Full Text] [Related]
17. Low-frequency logarithmic discretization of the reservoir spectrum for improving the efficiency of hierarchical equations of motion approach. Ye L; Zhang HD; Wang Y; Zheng X; Yan Y J Chem Phys; 2017 Aug; 147(7):074111. PubMed ID: 28830182 [TBL] [Abstract][Full Text] [Related]
18. Bexcitonics: Quasiparticle approach to open quantum dynamics. Chen X; Franco I J Chem Phys; 2024 May; 160(20):. PubMed ID: 38814013 [TBL] [Abstract][Full Text] [Related]
19. Taming Quantum Noise for Efficient Low Temperature Simulations of Open Quantum Systems. Xu M; Yan Y; Shi Q; Ankerhold J; Stockburger JT Phys Rev Lett; 2022 Dec; 129(23):230601. PubMed ID: 36563205 [TBL] [Abstract][Full Text] [Related]
20. Universal time-domain Prony fitting decomposition for optimized hierarchical quantum master equations. Chen ZH; Wang Y; Zheng X; Xu RX; Yan Y J Chem Phys; 2022 Jun; 156(22):221102. PubMed ID: 35705405 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]