These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 31255151)

  • 1. Acoustic dipole and monopole effects in solid particle interaction dynamics during acoustophoresis.
    Saeidi D; Saghafian M; Haghjooy Javanmard S; Hammarström B; Wiklund M
    J Acoust Soc Am; 2019 Jun; 145(6):3311. PubMed ID: 31255151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Quantitative Study of the Secondary Acoustic Radiation Force on Biological Cells during Acoustophoresis.
    Saeidi D; Saghafian M; Haghjooy Javanmard S; Wiklund M
    Micromachines (Basel); 2020 Jan; 11(2):. PubMed ID: 32019234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radiation dominated acoustophoresis driven by surface acoustic waves.
    Guo J; Kang Y; Ai Y
    J Colloid Interface Sci; 2015 Oct; 455():203-11. PubMed ID: 26070191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental study on inter-particle acoustic forces.
    Garcia-Sabaté A; Castro A; Hoyos M; González-Cinca R
    J Acoust Soc Am; 2014 Mar; 135(3):1056-63. PubMed ID: 24606249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of polymer-shelled microbubble motions in acoustophoresis.
    Kothapalli SV; Wiklund M; Janerot-Sjoberg B; Paradossi G; Grishenkov D
    Ultrasonics; 2016 Aug; 70():275-83. PubMed ID: 27261567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imaging the position-dependent 3D force on microbeads subjected to acoustic radiation forces and streaming.
    Lamprecht A; Lakämper S; Baasch T; Schaap IA; Dual J
    Lab Chip; 2016 Jul; 16(14):2682-93. PubMed ID: 27302661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasonic manipulation of particles and cells. Ultrasonic separation of cells.
    Coakley WT; Whitworth G; Grundy MA; Gould RK; Allman R
    Bioseparation; 1994 Apr; 4(2):73-83. PubMed ID: 7765041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW).
    Shi J; Huang H; Stratton Z; Huang Y; Huang TJ
    Lab Chip; 2009 Dec; 9(23):3354-9. PubMed ID: 19904400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multibody dynamics in acoustophoresis.
    Baasch T; Leibacher I; Dual J
    J Acoust Soc Am; 2017 Mar; 141(3):1664. PubMed ID: 28372083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of ultrasonic standing waves to enhance optical particle sizing equipment.
    Holwill IL
    Ultrasonics; 2000 Mar; 38(1-8):650-3. PubMed ID: 10829745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation on submicron particle separation and deflection using tilted-angle standing surface acoustic wave microfluidics.
    Peng T; Lin X; Li L; Huang L; Jiang B; Jia Y
    Heliyon; 2024 Feb; 10(3):e25042. PubMed ID: 38322952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acoustic radiation force acting on a heavy particle in a standing wave can be dominated by the acoustic microstreaming.
    Baasch T; Pavlic A; Dual J
    Phys Rev E; 2019 Dec; 100(6-1):061102. PubMed ID: 31962519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Free flow acoustophoresis: microfluidic-based mode of particle and cell separation.
    Petersson F; Aberg L; Swärd-Nilsson AM; Laurell T
    Anal Chem; 2007 Jul; 79(14):5117-23. PubMed ID: 17569501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The selection of layer thicknesses to control acoustic radiation force profiles in layered resonators.
    Hill M
    J Acoust Soc Am; 2003 Nov; 114(5):2654-61. PubMed ID: 14650002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acoustic interaction forces between small particles in an ideal fluid.
    Silva GT; Bruus H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063007. PubMed ID: 25615187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On-chip fluorescence-activated cell sorting by an integrated miniaturized ultrasonic transducer.
    Johansson L; Nikolajeff F; Johansson S; Thorslund S
    Anal Chem; 2009 Jul; 81(13):5188-96. PubMed ID: 19492800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical study of interparticle radiation force acting on rigid spheres in a standing wave.
    Sepehrirahnama S; Lim KM; Chau FS
    J Acoust Soc Am; 2015 May; 137(5):2614-22. PubMed ID: 25994694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trapping and patterning of large particles and cells in a 1D ultrasonic standing wave.
    Habibi R; Devendran C; Neild A
    Lab Chip; 2017 Sep; 17(19):3279-3290. PubMed ID: 28840206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Separation of sub-micron particles from micron particles using acoustic fluid relocation combined with acoustophoresis.
    Gautam GP; Gurung R; Fencl FA; Piyasena ME
    Anal Bioanal Chem; 2018 Oct; 410(25):6561-6571. PubMed ID: 30046870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustophoresis of a resonant elastic microparticle in a viscous fluid medium.
    Tahmasebipour A; Begley M; Meinhart C
    J Acoust Soc Am; 2022 May; 151(5):3083. PubMed ID: 35649929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.