These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 31255151)

  • 21. Ultrasonic particle size fractionation in a moving air stream.
    Budwig RS; Anderson MJ; Putnam G; Manning C
    Ultrasonics; 2010 Jan; 50(1):26-31. PubMed ID: 19682719
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The directional sensitivity of the acoustic radiation force to particle diameter.
    Ran W; Saylor JR
    J Acoust Soc Am; 2015 Jun; 137(6):3288-98. PubMed ID: 26093419
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Acoustic particle manipulation in a 40 kHz quarter-wavelength standing wave with an air boundary.
    Trippa G; Trine S; Ventikos Y; Coussios CC
    J Acoust Soc Am; 2012 May; 131(5):3627-37. PubMed ID: 22559340
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultrasonic enhancement of coated particle agglutination immunoassays: influence of particle density and compressibility.
    Thomas NE; Sobanski MA; Coakley WT
    Ultrasound Med Biol; 1999 Mar; 25(3):443-50. PubMed ID: 10374987
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Experimental and numerical studies on standing surface acoustic wave microfluidics.
    Mao Z; Xie Y; Guo F; Ren L; Huang PH; Chen Y; Rufo J; Costanzo F; Huang TJ
    Lab Chip; 2016 Feb; 16(3):515-24. PubMed ID: 26698361
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Acoustic Manipulation of Bio-Particles at High Frequencies: An Analytical and Simulation Approach.
    Samandari M; Abrinia K; Sanati-Nezhad A
    Micromachines (Basel); 2017 Sep; 8(10):. PubMed ID: 30400480
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Acoustofluidics 15: streaming with sound waves interacting with solid particles.
    Sadhal SS
    Lab Chip; 2012 Aug; 12(15):2600-11. PubMed ID: 22744212
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Surface acoustic wave induced particle manipulation in a PDMS channel--principle concepts for continuous flow applications.
    Johansson L; Enlund J; Johansson S; Katardjiev I; Yantchev V
    Biomed Microdevices; 2012 Apr; 14(2):279-89. PubMed ID: 22076383
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Acoustic radiation force of high-order Bessel beam standing wave tweezers on a rigid sphere.
    Mitri FG
    Ultrasonics; 2009 Dec; 49(8):794-8. PubMed ID: 19692103
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of microchannel height on the acoustophoretic motion of sub-micron particles.
    Lai TW; Tennakoon T; Chan KC; Liu CH; Chao CYH; Fu SC
    Ultrasonics; 2024 Jan; 136():107126. PubMed ID: 37553269
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Acoustic separation of submicron solid particles in air.
    Imani RJ; Robert E
    Ultrasonics; 2015 Dec; 63():135-40. PubMed ID: 26184447
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Potential-well model in acoustic tweezers.
    Kang ST; Yeh CK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jun; 57(6):1451-9. PubMed ID: 20529720
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Investigation into the Effect of Acoustic Radiation Force and Acoustic Streaming on Particle Patterning in Acoustic Standing Wave Fields.
    Liu S; Yang Y; Ni Z; Guo X; Luo L; Tu J; Zhang D; Zhang AJ
    Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28753955
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Acoustic radiation force and torque exerted on a small viscoelastic particle in an ideal fluid.
    Leão-Neto JP; Silva GT
    Ultrasonics; 2016 Sep; 71():1-11. PubMed ID: 27254398
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Acoustophoresis-driven particle focusing and separation with standard/inverse Chladni patterns.
    Zhao X; Hao N
    Lab Chip; 2024 Jun; 24(12):3149-3157. PubMed ID: 38787691
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Acoustofluidic Properties of Polystyrene Microparticles.
    Edthofer A; Novotny J; Lenshof A; Laurell T; Baasch T
    Anal Chem; 2023 Jul; 95(27):10346-10352. PubMed ID: 37363950
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Three-dimensional mid-air acoustic manipulation by ultrasonic phased arrays.
    Ochiai Y; Hoshi T; Rekimoto J
    PLoS One; 2014; 9(5):e97590. PubMed ID: 24849371
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamical motion of a pair of microparticles at the acoustic pressure nodal plane under the combined effect of axial primary radiation and interparticle forces.
    Hoque SZ; Nath A; Sen AK
    J Acoust Soc Am; 2021 Jul; 150(1):307. PubMed ID: 34340505
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Generalized potential theory for close-range acoustic interactions in the Rayleigh limit.
    Sepehrirhnama S; Lim KM
    Phys Rev E; 2020 Oct; 102(4-1):043307. PubMed ID: 33212642
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Numerical analysis for transverse microbead trapping using 30 MHz focused ultrasound in ray acoustics regime.
    Lee J
    Ultrasonics; 2014 Jan; 54(1):11-9. PubMed ID: 23809757
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.