These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 31255294)

  • 1. Modeling pH-Dependent NMR Chemical Shift Perturbations in Peptides.
    Artikis E; Brooks CL
    Biophys J; 2019 Jul; 117(2):258-268. PubMed ID: 31255294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of sample pH on the conformational backbone dynamics of a pseudotripeptide (H-Tyr-Tic psi [CH2-NH]Phe-OH) incorporating a reduced peptide bond: an NMR investigation.
    Carpenter KA; Wilkes BC; Schiller PW
    Biopolymers; 1995 Dec; 36(6):735-49. PubMed ID: 8555421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving the analysis of NMR spectra tracking pH-induced conformational changes: removing artefacts of the electric field on the NMR chemical shift.
    Kukić P; Farrell D; Søndergaard CR; Bjarnadottir U; Bradley J; Pollastri G; Nielsen JE
    Proteins; 2010 Mar; 78(4):971-84. PubMed ID: 19894279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing multiple effects on 15N, 13C alpha, 13C beta, and 13C' chemical shifts in peptides using density functional theory.
    Xu XP; Case DA
    Biopolymers; 2002 Dec; 65(6):408-23. PubMed ID: 12434429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing the Accuracy of Explicit Solvent Constant pH Molecular Dynamics Simulations for Peptides.
    Dobrev P; Vemulapalli SPB; Nath N; Griesinger C; Grubmüller H
    J Chem Theory Comput; 2020 Apr; 16(4):2561-2569. PubMed ID: 32192342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intra- and intermolecular effects on 1H chemical shifts in a silk model Peptide determined by high-field solid state 1H NMR and empirical calculations.
    Suzuki Y; Takahashi R; Shimizu T; Tansho M; Yamauchi K; Williamson MP; Asakura T
    J Phys Chem B; 2009 Jul; 113(29):9756-61. PubMed ID: 19569641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane environment modulates the pKa values of transmembrane helices.
    Panahi A; Brooks CL
    J Phys Chem B; 2015 Apr; 119(13):4601-7. PubMed ID: 25734901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PPM: a side-chain and backbone chemical shift predictor for the assessment of protein conformational ensembles.
    Li DW; Brüschweiler R
    J Biomol NMR; 2012 Nov; 54(3):257-65. PubMed ID: 22972619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. pH dependence of amide chemical shifts in natively disordered polypeptides detects medium-range interactions with ionizable residues.
    Pujato M; Bracken C; Mancusso R; Cataldi M; Tasayco ML
    Biophys J; 2005 Nov; 89(5):3293-302. PubMed ID: 16113108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing electric fields in proteins in solution by NMR spectroscopy.
    Hass MA; Jensen MR; Led JJ
    Proteins; 2008 Jul; 72(1):333-43. PubMed ID: 18214953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics simulations of small peptides: dependence on dielectric model and pH.
    Daggett V; Kollman PA; Kuntz ID
    Biopolymers; 1991 Feb; 31(3):285-304. PubMed ID: 1868159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical and experimental study of 15N NMR protonation shifts.
    Semenov VA; Samultsev DO; Krivdin LB
    Magn Reson Chem; 2015 Jun; 53(6):433-41. PubMed ID: 25891386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Constant-pH molecular dynamics study of protonation-structure relationship in a heptapeptide derived from ovomucoid third domain.
    Długosz M; Antosiewicz JM; Robertson AD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Feb; 69(2 Pt 1):021915. PubMed ID: 14995499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of micros-ms dynamics of proteins using a combined analysis of 15N NMR relaxation and chemical shift: conformational exchange in plastocyanin induced by histidine protonations.
    Hass MA; Thuesen MH; Christensen HE; Led JJ
    J Am Chem Soc; 2004 Jan; 126(3):753-65. PubMed ID: 14733549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of residue-specific acid dissociation constants for peptides by band-selective homonuclear-decoupled (1)H NMR.
    Wang J; Rabenstein DL
    Anal Chem; 2007 Sep; 79(17):6799-803. PubMed ID: 17672482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sampling the protonation states: the pH-dependent UV absorption spectrum of a polypeptide dyad.
    Pieri E; Ledentu V; Huix-Rotllant M; Ferré N
    Phys Chem Chem Phys; 2018 Sep; 20(36):23252-23261. PubMed ID: 30187041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interpreting protein structural dynamics from NMR chemical shifts.
    Robustelli P; Stafford KA; Palmer AG
    J Am Chem Soc; 2012 Apr; 134(14):6365-74. PubMed ID: 22381384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of multiple torsion-angle constraints in U-(13)C,(15)N-labeled peptides: 3D (1)H-(15)N-(13)C-(1)H dipolar chemical shift NMR spectroscopy in rotating solids.
    Rienstra CM; Hohwy M; Mueller LJ; Jaroniec CP; Reif B; Griffin RG
    J Am Chem Soc; 2002 Oct; 124(40):11908-22. PubMed ID: 12358535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NMR studies and semi-empirical energy calculations for cyclic ADP-ribose.
    Rutherford TJ; Wilkie J; Vu CQ; Schnackerz KD; Jacobson MK; Gani D
    Nucleosides Nucleotides Nucleic Acids; 2001 Aug; 20(8):1485-95. PubMed ID: 11554541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Langevin dynamics of proteins at constant pH.
    Walczak AM; Antosiewicz JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 1):051911. PubMed ID: 12513527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.