These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 31255595)

  • 21. Improving oral absorption via drug-loaded nanocarriers: absorption mechanisms, intestinal models and rational fabrication.
    Shahbazi MA; Santos HA
    Curr Drug Metab; 2013 Jan; 14(1):28-56. PubMed ID: 22497568
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Physicochemical properties, pharmacokinetics, toxicology and application of nanocarriers.
    Cai X; Jin M; Yao L; He B; Ahmed S; Safdar W; Ahmad I; Cheng DB; Lei Z; Sun T
    J Mater Chem B; 2023 Jan; 11(4):716-733. PubMed ID: 36594785
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Intracellular transport of nanocarriers across the intestinal epithelium.
    Fan W; Xia D; Zhu Q; Hu L; Gan Y
    Drug Discov Today; 2016 May; 21(5):856-63. PubMed ID: 27094490
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lipid nanocarriers: influence of lipids on product development and pharmacokinetics.
    Pathak K; Keshri L; Shah M
    Crit Rev Ther Drug Carrier Syst; 2011; 28(4):357-93. PubMed ID: 21967401
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A systematic evaluation of hydroxyethyl starch as a potential nanocarrier for parenteral drug delivery.
    Narayanan D; Nair S; Menon D
    Int J Biol Macromol; 2015 Mar; 74():575-84. PubMed ID: 25572720
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improved brain uptake of peptide-based CNS drugs via alternative routes of administrations of its nanocarrier delivery systems: a promising strategy for CNS targeting delivery of peptides.
    Qian S; Wang Q; Zuo Z
    Expert Opin Drug Metab Toxicol; 2014 Nov; 10(11):1491-508. PubMed ID: 25196358
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Superiority of TPGS-loaded micelles in the brain delivery of vinpocetine via administration of thermosensitive intranasal gel.
    Ahmed TA; El-Say KM; Ahmed OA; Aljaeid BM
    Int J Nanomedicine; 2019; 14():5555-5567. PubMed ID: 31413562
    [No Abstract]   [Full Text] [Related]  

  • 28. Mesoporous silica nanoparticles: synthesis, classification, drug loading, pharmacokinetics, biocompatibility, and application in drug delivery.
    Li Z; Zhang Y; Feng N
    Expert Opin Drug Deliv; 2019 Mar; 16(3):219-237. PubMed ID: 30686075
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of Lipid-Based Nanocarriers for Increasing Gastrointestinal Absorption of Lupinifolin.
    Musika J; Chudapongse N
    Planta Med; 2020 Mar; 86(5):364-372. PubMed ID: 32005042
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influencing Factors of the Pharmacokinetic Characters on Nanopharmaceutics.
    Ji X; Lu W; Wu K; Cho WC
    Pharm Nanotechnol; 2017; 5(1):24-31. PubMed ID: 28948908
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Polybutylcyanoacrylate nanocarriers as promising targeted drug delivery systems.
    Gao S; Xu Y; Asghar S; Chen M; Zou L; Eltayeb S; Huo M; Ping Q; Xiao Y
    J Drug Target; 2015; 23(6):481-96. PubMed ID: 25738991
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Toxicity evaluation of nanocarriers for the oral delivery of macromolecular drugs.
    Ojer P; Iglesias T; Azqueta A; Irache JM; López de Cerain A
    Eur J Pharm Biopharm; 2015 Nov; 97(Pt A):206-17. PubMed ID: 26493712
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Translatable High Drug Loading Drug Delivery Systems Based on Biocompatible Polymer Nanocarriers.
    Chen W; Zhou S; Ge L; Wu W; Jiang X
    Biomacromolecules; 2018 Jun; 19(6):1732-1745. PubMed ID: 29690764
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of borneol on the pharmacokinetics of 9-nitrocamptothecin encapsulated in PLGA nanoparticles with different size via oral administration.
    Ru G; Han L; Qing J; Sheng J; Li R; Qiu M; Wang J
    Drug Deliv; 2016 Nov; 23(9):3417-3423. PubMed ID: 27174642
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recent advances in nanocarrier-based mucosal delivery of biomolecules.
    Kammona O; Kiparissides C
    J Control Release; 2012 Aug; 161(3):781-94. PubMed ID: 22659331
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Targeting and delivery of therapeutic enzymes.
    Dean SN; Turner KB; Medintz IL; Walper SA
    Ther Deliv; 2017 Jul; 8(7):577-595. PubMed ID: 28633594
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Targeted multifunctional lipid-based nanocarriers for image-guided drug delivery.
    Koning GA; Krijger GC
    Anticancer Agents Med Chem; 2007 Jul; 7(4):425-40. PubMed ID: 17630918
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Principles of drug biodisposition in the neonate. A critical evaluation of the pharmacokinetic-pharmacodynamic interface (Part I).
    Besunder JB; Reed MD; Blumer JL
    Clin Pharmacokinet; 1988 Apr; 14(4):189-216. PubMed ID: 3292100
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pharmacokinetic studies of nanoparticles as a delivery system for conventional drugs and herb-derived compounds for cancer therapy: a systematic review.
    Abdifetah O; Na-Bangchang K
    Int J Nanomedicine; 2019; 14():5659-5677. PubMed ID: 31632004
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Extracellular vesicles: intelligent delivery strategies for therapeutic applications.
    Pinheiro A; Silva AM; Teixeira JH; Gonçalves RM; Almeida MI; Barbosa MA; Santos SG
    J Control Release; 2018 Nov; 289():56-69. PubMed ID: 30261205
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.