These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 31255685)

  • 1. Stability of Protein Formulations at Subzero Temperatures by Isochoric Cooling.
    Correia C; Tavares E; Lopes C; Silva JG; Duarte A; Geraldes V; Rodrigues MA; Melo EP
    J Pharm Sci; 2020 Jan; 109(1):316-322. PubMed ID: 31255685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring and modeling hemoglobin aggregation below the freezing temperature.
    Rosa M; Lopes C; Melo EP; Singh SK; Geraldes V; Rodrigues MA
    J Phys Chem B; 2013 Aug; 117(30):8939-46. PubMed ID: 23808610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pressure in isochoric systems containing aqueous solutions at subzero Centigrade temperatures.
    Ukpai G; Năstase G; Șerban A; Rubinsky B
    PLoS One; 2017; 12(8):e0183353. PubMed ID: 28817681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Native and Non-Native aggregation pathways of antibodies anticipated by cold-accelerated studies.
    Rodrigues MA; Duarte A; Geraldes V; Kingsbury JS; Sanket P; Filipe V; Nakach M; Authelin JR
    Eur J Pharm Biopharm; 2023 Nov; 192():174-184. PubMed ID: 37832611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucose and glycerol temperature-pressure correlations for the design of cryopreservation protocols in an isochoric system at subfreezing temperature.
    Beșchea GA; Câmpean ŞI; Tăbăcaru MB; Şerban A; Rubinsky B; Năstase G
    Biochem Biophys Res Commun; 2021 Jun; 559():42-47. PubMed ID: 33933991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of isochoric subcooling.
    Szobota SA; Rubinsky B
    Cryobiology; 2006 Aug; 53(1):139-42. PubMed ID: 16762336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isochoric vitrification: An experimental study to establish proof of concept.
    Zhang Y; Ukpai G; Grigoropoulos A; Powell-Palm MJ; Weegman BP; Taylor MJ; Rubinsky B
    Cryobiology; 2018 Aug; 83():48-55. PubMed ID: 29908947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of undissolved air on isochoric freezing.
    Perez PA; Preciado J; Carlson G; DeLonzor R; Rubinsky B
    Cryobiology; 2016 Jun; 72(3):225-31. PubMed ID: 27074589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The thermodynamic principles of isochoric cryopreservation.
    Rubinsky B; Perez PA; Carlson ME
    Cryobiology; 2005 Apr; 50(2):121-38. PubMed ID: 15843002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein formulation and lyophilization cycle design: prevention of damage due to freeze-concentration induced phase separation.
    Heller MC; Carpenter JF; Randolph TW
    Biotechnol Bioeng; 1999 Apr; 63(2):166-74. PubMed ID: 10099593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isochoric supercooling cryomicroscopy.
    Zhao Y; Lou L; Lyu C; Powell-Palm MJ; Rubinsky B
    Cryobiology; 2022 Jun; 106():139-147. PubMed ID: 35189096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of the kinetics of protein unfolding in viscous systems and implications for protein stability in freeze-drying.
    Tang XC; Pikal MJ
    Pharm Res; 2005 Jul; 22(7):1176-85. PubMed ID: 16028019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein Aggregation in Frozen Trehalose Formulations: Effects of Composition, Cooling Rate, and Storage Temperature.
    Connolly BD; Le L; Patapoff TW; Cromwell MEM; Moore JMR; Lam P
    J Pharm Sci; 2015 Dec; 104(12):4170-4184. PubMed ID: 26398200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Freeze-Drying of L-Arginine/Sucrose-Based Protein Formulations, Part 2: Optimization of Formulation Design and Freeze-Drying Process Conditions for an L-Arginine Chloride-Based Protein Formulation System.
    Stärtzel P; Gieseler H; Gieseler M; Abdul-Fattah AM; Adler M; Mahler HC; Goldbach P
    J Pharm Sci; 2015 Dec; 104(12):4241-4256. PubMed ID: 26422647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Escherichia coli viability in an isochoric system at subfreezing temperatures.
    Powell-Palm MJ; Preciado J; Lyu C; Rubinsky B
    Cryobiology; 2018 Dec; 85():17-24. PubMed ID: 30365921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of stabilizers and denaturants on the cold denaturation temperatures of proteins and implications for freeze-drying.
    Tang XC; Pikal MJ
    Pharm Res; 2005 Jul; 22(7):1167-75. PubMed ID: 16028018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physical factors affecting the storage stability of freeze-dried interleukin-1 receptor antagonist: glass transition and protein conformation.
    Chang BS; Beauvais RM; Dong A; Carpenter JF
    Arch Biochem Biophys; 1996 Jul; 331(2):249-58. PubMed ID: 8660705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of sugars and polyols on the stability of azurin in ice.
    Strambini GB; Balestreri E; Galli A; Gonnelli M
    J Phys Chem B; 2008 Apr; 112(14):4372-80. PubMed ID: 18341329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protective Effect of Biological Osmolytes against Heat- and Chaotropic Agent-Induced Denaturation of
    Lo HF; Chi MC; Lin MG; Lan YG; Wang TF; Lin LL
    J Microbiol Biotechnol; 2018 Sep; 28(9):1457-1466. PubMed ID: 30369111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isochoric and isobaric freezing of fish muscle.
    Năstase G; Lyu C; Ukpai G; Şerban A; Rubinsky B
    Biochem Biophys Res Commun; 2017 Apr; 485(2):279-283. PubMed ID: 28228353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.