These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 31255850)

  • 1. Removal of trace naproxen from aqueous solution using a laboratory-scale reactive flow-through membrane electrode.
    Xu L; Ma X; Niu J; Chen J; Zhou C
    J Hazard Mater; 2019 Nov; 379():120692. PubMed ID: 31255850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical degradation of naproxen from water by anodic oxidation with multiwall carbon nanotubes glassy carbon electrode.
    Díaz E; Stożek S; Patiño Y; Ordóñez S
    Water Sci Technol; 2019 Feb; 79(3):480-488. PubMed ID: 30924802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical analysis of naproxen in water using poly(l-serine)-modified glassy carbon electrode.
    Hung CM; Huang CP; Chen SK; Chen CW; Dong CD
    Chemosphere; 2020 Sep; 254():126686. PubMed ID: 32320830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of naproxen and ibuprofen removal in photolysis using a Box-Behnken design: effect of Fe(III), NO3-, and humic acid.
    Im JK; Yoon Y; Zoh KD
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(4):422-33. PubMed ID: 24345240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effective anodic oxidation of naproxen by platinum nanoparticles coated FTO glass.
    Chin CJ; Chen TY; Lee M; Chang CF; Liu YT; Kuo YT
    J Hazard Mater; 2014 Jul; 277():110-9. PubMed ID: 24656855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactive Nitrogen Species Are Also Involved in the Transformation of Micropollutants by the UV/Monochloramine Process.
    Wu Z; Chen C; Zhu BZ; Huang CH; An T; Meng F; Fang J
    Environ Sci Technol; 2019 Oct; 53(19):11142-11152. PubMed ID: 31411457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. UV and solar photo-degradation of naproxen: TiO₂ catalyst effect, reaction kinetics, products identification and toxicity assessment.
    Jallouli N; Elghniji K; Hentati O; Ribeiro AR; Silva AM; Ksibi M
    J Hazard Mater; 2016 Mar; 304():329-36. PubMed ID: 26571001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ozone- and Hydroxyl Radical-Induced Degradation of Micropollutants in a Novel UVA-LED-Activated Periodate Advanced Oxidation Process.
    Li J; Yang T; Zeng G; An L; Jiang J; Ao Z; Ma J
    Environ Sci Technol; 2023 Nov; 57(47):18607-18616. PubMed ID: 36745772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrical energy per order and current efficiency for electrochemical oxidation of p-chlorobenzoic acid with boron-doped diamond anode.
    Lanzarini-Lopes M; Garcia-Segura S; Hristovski K; Westerhoff P
    Chemosphere; 2017 Dec; 188():304-311. PubMed ID: 28888118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into the degradation and detoxication mechanisms of aqueous capecitabine in electrochemical oxidation process.
    Xu L; Tang S; Wang K; Ma X; Niu J
    Chemosphere; 2020 Feb; 241():125058. PubMed ID: 31610461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-efficiency electrochemical degradation of antiviral drug abacavir using a penetration flux porous Ti/SnO
    Zhou C; Wang Y; Chen J; Xu L; Huang H; Niu J
    Chemosphere; 2019 Jun; 225():304-310. PubMed ID: 30877924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Photodegradation of naproxen in aqueous systems by UV irradiation: mechanism and toxicity of photolysis products].
    Ma DJ; Liu GG; Lü WY; Yao K; Zhou LH; Xie CP
    Huan Jing Ke Xue; 2013 May; 34(5):1782-9. PubMed ID: 23914528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TiO2 photocatalysis of naproxen: effect of the water matrix, anions and diclofenac on degradation rates.
    Kanakaraju D; Motti CA; Glass BD; Oelgemöller M
    Chemosphere; 2015 Nov; 139():579-88. PubMed ID: 26340372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical degradation of sunscreen agent benzophenone-3 and its metabolite by Ti/SnO
    Zhou C; Wang Y; Chen J; Niu J
    Sci Total Environ; 2019 Oct; 688():75-82. PubMed ID: 31229830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidation of flumequine in aqueous solution by UV-activated peroxymonosulfate: Kinetics, water matrix effects, degradation products and reaction pathways.
    Qi Y; Qu R; Liu J; Chen J; Al-Basher G; Alsultan N; Wang Z; Huo Z
    Chemosphere; 2019 Dec; 237():124484. PubMed ID: 31394442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Porous Ti/SnO
    Zhou C; Wang Y; Chen J; Niu J
    Environ Int; 2019 Dec; 133(Pt A):105157. PubMed ID: 31520959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of photoelectrocatalytic degradation of humic acid using B2O3.TiO2/Ti photoelectrode.
    Yan-li J; Hui-ling L; Chun-mei L
    J Environ Sci (China); 2005; 17(2):208-11. PubMed ID: 16295890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical degradation of antibiotic levofloxacin by PbO
    Xia Y; Dai Q
    Chemosphere; 2018 Aug; 205():215-222. PubMed ID: 29698833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of stable imine intermediates in the coexistence of sulfamethoxazole and humic acid by electrochemical oxidation.
    Li S; Tong Y; Dong H; Lu J; Niu J
    J Hazard Mater; 2022 Apr; 427():128166. PubMed ID: 34996000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation of naproxen by combination of Fenton reagent and ultrasound irradiation: optimization using response surface methodology.
    Lan RJ; Li JT; Sun HW; Su WB
    Water Sci Technol; 2012; 66(12):2695-701. PubMed ID: 23109588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.