These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 31255851)

  • 21. Analysis and interpretation of the leaching behaviour of waste thermal treatment bottom ash by batch and column tests.
    Di Gianfilippo M; Costa G; Verginelli I; Gavasci R; Lombardi F
    Waste Manag; 2016 Oct; 56():216-28. PubMed ID: 27478024
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparative leaching of six toxic metals from raw and chemically stabilized MSWI fly ash using citric acid.
    Wang H; Fan X; Wang YN; Li W; Sun Y; Zhan M; Wu G
    J Environ Manage; 2018 Feb; 208():15-23. PubMed ID: 29245145
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Leaching of wood ash products aimed for spreading in forest floors--influence of method and L/S ratio.
    Mellbo P; Sarenbo S; Stålnacke O; Claesson T
    Waste Manag; 2008 Nov; 28(11):2235-44. PubMed ID: 18083021
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Novel Dry Treatment for Municipal Solid Waste Incineration Bottom Ash for the Reduction of Salts and Potential Toxic Elements.
    Abis M; Bruno M; Simon FG; Grönholm R; Hoppe M; Kuchta K; Fiore S
    Materials (Basel); 2021 Jun; 14(11):. PubMed ID: 34200365
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Short-term natural weathering of MSWI bottom ash.
    Chimenos JM; Fernández AI; Nadal R; Espiell F
    J Hazard Mater; 2000 Dec; 79(3):287-99. PubMed ID: 11077164
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characteristics of the cement-solidified municipal solid waste incineration fly ash.
    Li J; Zeng M; Ji W
    Environ Sci Pollut Res Int; 2018 Dec; 25(36):36736-36744. PubMed ID: 30382514
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of controlled low-strength material obtained from dewatered sludge and refuse incineration bottom ash: mechanical and microstructural perspectives.
    Zhen G; Lu X; Zhao Y; Niu J; Chai X; Su L; Li YY; Liu Y; Du J; Hojo T; Hu Y
    J Environ Manage; 2013 Nov; 129():183-9. PubMed ID: 23933484
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation and prediction of emissions from a road built with bottom ash from municipal solid waste incineration (MSWI).
    Aberg A; Kumpiene J; Ecke H
    Sci Total Environ; 2006 Feb; 355(1-3):1-12. PubMed ID: 15893365
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Antimony leaching from uncarbonated and carbonated MSWI bottom ash.
    Cornelis G; Van Gerven T; Vandecasteele C
    J Hazard Mater; 2006 Oct; 137(3):1284-92. PubMed ID: 16730886
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Study on physiochemical properties and leaching behavior of residual ash fractions from a municipal solid waste incinerator (MSWI) plant.
    Nikravan M; Ramezanianpour AA; Maknoon R
    J Environ Manage; 2020 Apr; 260():110042. PubMed ID: 31941624
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Immobilization of antimony in waste-to-energy bottom ash by addition of calcium and iron containing additives.
    Van Caneghem J; Verbinnen B; Cornelis G; de Wijs J; Mulder R; Billen P; Vandecasteele C
    Waste Manag; 2016 Aug; 54():162-8. PubMed ID: 27216730
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigation on leaching behaviour of toxic metals from biomedical ash and its controlling mechanism.
    Patel KM; Devatha CP
    Environ Sci Pollut Res Int; 2019 Feb; 26(6):6191-6198. PubMed ID: 30617896
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Leaching characteristics of slag from the melting treatment of municipal solid waste incinerator ash.
    Lin KL; Chang CT
    J Hazard Mater; 2006 Jul; 135(1-3):296-302. PubMed ID: 16406298
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recirculation of biomass ashes onto forest soils: ash composition, mineralogy and leaching properties.
    Maresca A; Hyks J; Astrup TF
    Waste Manag; 2017 Dec; 70():127-138. PubMed ID: 28947146
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assessment of mobility and bioavailability of contaminants in MSW incineration ash with aquatic and terrestrial bioassays.
    Ribé V; Nehrenheim E; Odlare M
    Waste Manag; 2014 Oct; 34(10):1871-6. PubMed ID: 24502934
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of leaching behaviour by quenching of bottom ash from MSW incineration.
    Marchese F; Genon G
    Waste Manag Res; 2011 Oct; 29(10 Suppl):39-47. PubMed ID: 21057006
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ten-year chemical evolution of leachate and municipal solid waste incineration bottom ash used in a test road site.
    Dabo D; Badreddine R; De Windt L; Drouadaine I
    J Hazard Mater; 2009 Dec; 172(2-3):904-13. PubMed ID: 19733006
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chemical composition and leachability of differently sized material fractions of municipal solid waste incineration bottom ash.
    Huber F; Blasenbauer D; Aschenbrenner P; Fellner J
    Waste Manag; 2019 Jul; 95():593-603. PubMed ID: 31351646
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanisms contributing to the thermal analysis of waste incineration bottom ash and quantification of different carbon species.
    Rocca S; van Zomeren A; Costa G; Dijkstra JJ; Comans RN; Lombardi F
    Waste Manag; 2013 Feb; 33(2):373-81. PubMed ID: 23246084
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of industrial residue combinations on availability of elements.
    Brännvall E; Zamora CB; Sjöblom R; Kumpiene J
    J Hazard Mater; 2014 Jul; 276():171-81. PubMed ID: 24887119
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.