These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 31255857)

  • 1. One immunoassay probe makes SERS and fluorescence two readout signals: Rapid imaging and determination of intracellular glutathione levels.
    Yao W; Chang L; Yin W; Wang T; Yang Y; Yin P; Yang M; Ma Y; Qin Y; Ma H
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Dec; 223():117303. PubMed ID: 31255857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon Nanodot-Decorated Ag@SiO2 Nanoparticles for Fluorescence and Surface-Enhanced Raman Scattering Immunoassays.
    Zhang X; Du X
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):1033-40. PubMed ID: 26692186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly sensitive immunoassay based on SERS using nano-Au immune probes and a nano-Ag immune substrate.
    Shu L; Zhou J; Yuan X; Petti L; Chen J; Jia Z; Mormile P
    Talanta; 2014 Jun; 123():161-8. PubMed ID: 24725879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of 2-mercaptobenzothiazole-labeled immuno-Au aggregates for SERS-based immunoassay.
    Song C; Wang Z; Yang J; Zhang R; Cui Y
    Colloids Surf B Biointerfaces; 2010 Nov; 81(1):285-8. PubMed ID: 20688492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of AgcoreAushell bimetallic nanoparticles for immunoassay based on surface-enhanced Raman spectroscopy.
    Cui Y; Ren B; Yao JL; Gu RA; Tian ZQ
    J Phys Chem B; 2006 Mar; 110(9):4002-6. PubMed ID: 16509689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immunoassay using surface-enhanced Raman scattering based on aggregation of reporter-labeled immunogold nanoparticles.
    Chen JW; Lei Y; Liu XJ; Jiang JH; Shen GL; Yu RQ
    Anal Bioanal Chem; 2008 Sep; 392(1-2):187-93. PubMed ID: 18597080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasensitive SERS immunoassay based on diatom biosilica for detection of interleukins in blood plasma.
    Kamińska A; Sprynskyy M; Winkler K; Szymborski T
    Anal Bioanal Chem; 2017 Nov; 409(27):6337-6347. PubMed ID: 28852782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D SERS (surface enhanced Raman scattering) imaging of intracellular pathways.
    Huang KC; Bando K; Ando J; Smith NI; Fujita K; Kawata S
    Methods; 2014 Jul; 68(2):348-53. PubMed ID: 24556553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glucose-bridged silver nanoparticle assemblies for highly sensitive molecular recognition of sialic acid on cancer cells via surface-enhanced raman scattering spectroscopy.
    Deng R; Yue J; Qu H; Liang L; Sun D; Zhang J; Liang C; Xu W; Xu S
    Talanta; 2018 Mar; 179():200-206. PubMed ID: 29310222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unveiling NIR Aza-Boron-Dipyrromethene (BODIPY) Dyes as Raman Probes: Surface-Enhanced Raman Scattering (SERS)-Guided Selective Detection and Imaging of Human Cancer Cells.
    Adarsh N; Ramya AN; Maiti KK; Ramaiah D
    Chemistry; 2017 Oct; 23(57):14286-14291. PubMed ID: 28796314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Streptococcus suis II immunoassay based on thorny gold nanoparticles and surface enhanced Raman scattering.
    Chen K; Han H; Luo Z
    Analyst; 2012 Mar; 137(5):1259-64. PubMed ID: 22282767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bio-hybrid gold nanoparticles as SERS probe for rapid bacteria cell identification.
    Franco D; De Plano LM; Rizzo MG; Scibilia S; Lentini G; Fazio E; Neri F; Guglielmino SPP; Mezzasalma AM
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jan; 224():117394. PubMed ID: 31351419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SERS--a single-molecule and nanoscale tool for bioanalytics.
    Kneipp J; Kneipp H; Kneipp K
    Chem Soc Rev; 2008 May; 37(5):1052-60. PubMed ID: 18443689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SERS immunoassay based on the capture and concentration of antigen-assembled gold nanoparticles.
    Lopez A; Lovato F; Oh SH; Lai YH; Filbrun S; Driskell EA; Driskell JD
    Talanta; 2016; 146():388-93. PubMed ID: 26695280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of intracellular state based on controlled 3D nanostructures mediated surface enhanced Raman scattering.
    El-Said WA; Kim TH; Kim H; Choi JW
    PLoS One; 2011 Feb; 6(2):e15836. PubMed ID: 21390213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SERS spectral study of HAuCl
    Wang X; Jiang C; Qin Y; Peng Y; Wen G; Liang A; Jiang Z
    Sci Rep; 2017 Apr; 7():45979. PubMed ID: 28378828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications.
    Qian XM; Nie SM
    Chem Soc Rev; 2008 May; 37(5):912-20. PubMed ID: 18443676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A graphene oxide/gold nanoparticle-based amplification method for SERS immunoassay of cardiac troponin I.
    Fu X; Wang Y; Liu Y; Liu H; Fu L; Wen J; Li J; Wei P; Chen L
    Analyst; 2019 Feb; 144(5):1582-1589. PubMed ID: 30666995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface-enhanced Raman scattering imaging using noble metal nanoparticles.
    Wilson AJ; Willets KA
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2013; 5(2):180-9. PubMed ID: 23335562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Widefield quantitative multiplex surface enhanced Raman scattering imaging in vivo.
    McVeigh PZ; Mallia RJ; Veilleux I; Wilson BC
    J Biomed Opt; 2013 Apr; 18(4):046011. PubMed ID: 23591913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.