These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 31255965)

  • 1. Recycling of incinerated sewage sludge ash as an adsorbent for heavy metals removal from aqueous solutions.
    Wang Q; Li JS; Poon CS
    J Environ Manage; 2019 Oct; 247():509-517. PubMed ID: 31255965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arsenate(V) removal from aqueous system by using modified incinerated sewage sludge ash (ISSA) as a novel adsorbent.
    Gao S; Wang Q; Nie J; Poon CS; Yin H; Li JS
    Chemosphere; 2021 May; 270():129423. PubMed ID: 33401069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using incinerated sewage sludge ash as a high-performance adsorbent for lead removal from aqueous solutions: Performances and mechanisms.
    Wang Q; Li JS; Poon CS
    Chemosphere; 2019 Jul; 226():587-596. PubMed ID: 30954893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using Sewage Sludge Ash as an Efficient Adsorbent for Pb (II) and Cu (II) in Single and Binary Systems.
    Militaru BA; Pode R; Lupa L; Schmidt W; Tekle-Röttering A; Kazamer N
    Molecules; 2020 May; 25(11):. PubMed ID: 32486401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alkaline modification of the acid residue of incinerated sewage sludge ash after phosphorus recovery for heavy metal removal from aqueous solutions.
    Wang Q; Li JS; Xue Q; Poon CS
    Waste Manag; 2021 Mar; 123():80-87. PubMed ID: 33571832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel recycling of incinerated sewage sludge ash (ISSA) and waste bentonite as ceramsite for Pb-containing wastewater treatment: Performance and mechanism.
    Nie J; Wang Q; Gao S; Poon CS; Zhou Y; Li JS
    J Environ Manage; 2021 Jun; 288():112382. PubMed ID: 33756386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristics and metal leachability of incinerated sewage sludge ash and air pollution control residues from Hong Kong evaluated by different methods.
    Li JS; Xue Q; Fang L; Poon CS
    Waste Manag; 2017 Jun; 64():161-170. PubMed ID: 28347585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosorption of heavy metals from aqueous solutions using activated sludge, Aeromasss hydrophyla, and Branhamella spp based on modeling with GEOCHEM.
    Kurniawan TA; Lo W; Othman MHD; Goh HH; Chong KK
    Environ Res; 2022 Nov; 214(Pt 4):114070. PubMed ID: 35988827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fate of metals before and after chemical extraction of incinerated sewage sludge ash.
    Li JS; Tsang DCW; Wang QM; Fang L; Xue Q; Poon CS
    Chemosphere; 2017 Nov; 186():350-359. PubMed ID: 28800536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption studies of a multi-metal system within acetate media, with a view to sustainable phosphate recovery from sewage sludge.
    Bezzina JP; Robshaw TJ; Canner AJ; Dawson R; Ogden MD
    J Environ Manage; 2022 Dec; 324():116279. PubMed ID: 36170782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosorption of copper, zinc, cadmium and chromium ions from aqueous solution by natural foxtail millet shell.
    Peng SH; Wang R; Yang LZ; He L; He X; Liu X
    Ecotoxicol Environ Saf; 2018 Dec; 165():61-69. PubMed ID: 30193165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of heavy metal ions by iron oxide coated sewage sludge.
    Phuengprasop T; Sittiwong J; Unob F
    J Hazard Mater; 2011 Feb; 186(1):502-7. PubMed ID: 21167637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recycling of waste glass and incinerated sewage sludge ash in glass-ceramics.
    Huang Y; Chen Z; Liu Y; Lu JX; Bian Z; Yio M; Cheeseman C; Wang F; Sun Poon C
    Waste Manag; 2024 Feb; 174():229-239. PubMed ID: 38070442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge.
    Smith SR
    Environ Int; 2009 Jan; 35(1):142-56. PubMed ID: 18691760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effects of sulphur compounds on the volatile characteristics of heavy metals in fly ash from the MSW and sewage sludge co-combustion plant during the disposal process with higher temperature].
    Liu JY; Sun SY
    Huan Jing Ke Xue; 2012 Nov; 33(11):3990-8. PubMed ID: 23323436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Persimmon leaf bio-waste for adsorptive removal of heavy metals from aqueous solution.
    Lee SY; Choi HJ
    J Environ Manage; 2018 Mar; 209():382-392. PubMed ID: 29309963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of nickel and cadmium from aqueous solutions by sewage sludge ash: study in single and binary systems.
    Elouear Z; Bouzid J; Boujelben N
    Environ Technol; 2009 May; 30(6):561-70. PubMed ID: 19603703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of 'waste' metal hydroxide sludge for adsorption of azo reactive dyes.
    Netpradit S; Thiravetyan P; Towprayoon S
    Water Res; 2003 Feb; 37(4):763-72. PubMed ID: 12531258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A study on removal characteristics of copper from aqueous solution by sewage sludge and pomace ashes.
    Bouzid J; Elouear Z; Ksibi M; Feki M; Montiel A
    J Hazard Mater; 2008 Apr; 152(2):838-45. PubMed ID: 17822842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effects of adsorbents on partitioning and fixation of heavy metals in the incineration process of sewage sludge].
    Liu JY; Sun SY; Chen T
    Huan Jing Ke Xue; 2013 Mar; 34(3):1166-73. PubMed ID: 23745430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.