These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 312560)
1. B-wave currents in the frog retina. Newman EA Vision Res; 1979; 19(3):227-34. PubMed ID: 312560 [No Abstract] [Full Text] [Related]
2. GABA and the lateral spread of tonic activity in frog retina. Mooney RD Vision Res; 1979; 19(5):501-5. PubMed ID: 314701 [No Abstract] [Full Text] [Related]
3. Relation of the epsilon-wave to ganglion cell activity and rod responses in the frog. Newman EA; Lettvin JY Vision Res; 1978; 18(9):1181-8. PubMed ID: 309682 [No Abstract] [Full Text] [Related]
4. Species differences in the intraretinal electroretinogram within the leopard frog complex. Criswell MH; Karwoski CJ; Proenza LM Vision Res; 1979; 19(3):339-41. PubMed ID: 312562 [No Abstract] [Full Text] [Related]
5. Effects of edrophonium on end-plate currents in frog skeletal muscle. Goldner MM; Narahashi T Eur J Pharmacol; 1974 Mar; 25(3):362-71. PubMed ID: 4545304 [No Abstract] [Full Text] [Related]
6. Current-source density analysis of the electroretinogram of the frog: methodological issues and origin of components. Karwoski CJ; Xu X; Yu H J Opt Soc Am A Opt Image Sci Vis; 1996 Mar; 13(3):549-56. PubMed ID: 8627411 [TBL] [Abstract][Full Text] [Related]
7. The effects of methylmercury compounds on the skin (in vitro) of the leopard frog (Rana pipiens). Yorio T; Bentley PJ Comp Gen Pharmacol; 1973 Jun; 4(14):167-74. PubMed ID: 4543836 [No Abstract] [Full Text] [Related]
8. Identification of intracellular responses in the frog retina. Matsumoto N; Naka KI Brain Res; 1972 Jul; 42(1):59-71. PubMed ID: 4114818 [No Abstract] [Full Text] [Related]
10. Frog retinal ganglion cells show species differences in their optimal stimulus sizes. Glickman RD; Pomeranz B Nature; 1977 Jan; 265(5589):51-3. PubMed ID: 299917 [No Abstract] [Full Text] [Related]
11. Light adaptation and excitation: lateral spread of signals within the frog retina. Burkhardt DA; Berntson GG Vision Res; 1972 Jun; 12(6):1095-111. PubMed ID: 4537830 [No Abstract] [Full Text] [Related]
12. [Changes in the ERG c-wave in the isolated chick retina due to osmotic gradient variation in the vitreal and choroidal perfusing solutions]. Yoneyama T Nippon Ganka Gakkai Zasshi; 1986 Feb; 90(2):356-63. PubMed ID: 3706079 [No Abstract] [Full Text] [Related]
13. Voltage clamp experiments of single muscle fibers of Rana pipiens. Moore LE J Gen Physiol; 1972 Jul; 60(1):1-19. PubMed ID: 4537778 [TBL] [Abstract][Full Text] [Related]
14. The isolated receptor potential of the frog isolated retina: action spectra before and after extensive bleaching. Hood DC; Mansfield AF Vision Res; 1972 Dec; 12(12):2109-19. PubMed ID: 4539071 [No Abstract] [Full Text] [Related]
15. Current source-density analysis of the b-wave of frog retina. Newman EA J Neurophysiol; 1980 May; 43(5):1355-66. PubMed ID: 6246222 [No Abstract] [Full Text] [Related]
16. Potassium release in the frog retina and the origin of the b-wave of the electroretinogram [proceedings]. Green DG; Oakley B Arzneimittelforschung; 1978; 28(5):873. PubMed ID: 312107 [No Abstract] [Full Text] [Related]
17. Responses of the amacrine cell to optic nerve stimulation in the frog retina. Matsumoto N Vision Res; 1975 Apr; 15(4):509-14. PubMed ID: 1079386 [No Abstract] [Full Text] [Related]
18. An analysis of the cable properties of frog ventricular myocardium. Chapman RA; Fry CH J Physiol; 1978 Oct; 283():263-82. PubMed ID: 309942 [TBL] [Abstract][Full Text] [Related]
19. Anomalous temperature dependence of the sodium conductance in rabbit nerve compared with frog nerve. Chiu SY; Mrose HE; Ritchie JM Nature; 1979 May; 279(5711):327-8. PubMed ID: 313012 [No Abstract] [Full Text] [Related]
20. Rod and cone generation of wavelets in the frog electroretinogram. Fatechand R Vision Res; 1978; 18(2):229-32. PubMed ID: 307298 [No Abstract] [Full Text] [Related] [Next] [New Search]