BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

691 related articles for article (PubMed ID: 31256323)

  • 1. Impact of Induced Pluripotent Stem Cells in Bone Repair and Regeneration.
    Rana D; Kumar S; Webster TJ; Ramalingam M
    Curr Osteoporos Rep; 2019 Aug; 17(4):226-234. PubMed ID: 31256323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid human-derived iPSC osteogenesis combined with three-dimensionally printed Ti6Al4V scaffolds for the repair of bone defects.
    Yu L; Yang Y; Zhang B; Bai X; Fei Q; Zhang L
    J Cell Physiol; 2020 Dec; 235(12):9763-9772. PubMed ID: 32424865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Osteogenic differentiation and bone regeneration of iPSC-MSCs supported by a biomimetic nanofibrous scaffold.
    Xie J; Peng C; Zhao Q; Wang X; Yuan H; Yang L; Li K; Lou X; Zhang Y
    Acta Biomater; 2016 Jan; 29():365-379. PubMed ID: 26441129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Therapeutic antibody directed osteogenic differentiation of induced pluripotent stem cell derived MSCs.
    Wu Q; Yang B; Cao C; Hu K; Wang P; Man Y
    Acta Biomater; 2018 Jul; 74():222-235. PubMed ID: 29778895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced reconstruction of rat calvarial defects achieved by plasma-treated electrospun scaffolds and induced pluripotent stem cells.
    Ardeshirylajimi A; Dinarvand P; Seyedjafari E; Langroudi L; Adegani FJ; Soleimani M
    Cell Tissue Res; 2013 Dec; 354(3):849-60. PubMed ID: 23955642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro osteogenic differentiation potential of the human induced pluripotent stem cells augments when grown on Graphene oxide-modified nanofibers.
    Saburi E; Islami M; Hosseinzadeh S; Moghadam AS; Mansour RN; Azadian E; Joneidi Z; Nikpoor AR; Ghadiani MH; Khodaii Z; Ardeshirylajimi A
    Gene; 2019 May; 696():72-79. PubMed ID: 30772518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Induced pluripotent stem cells as a new getaway for bone tissue engineering: A systematic review.
    Bastami F; Nazeman P; Moslemi H; Rezai Rad M; Sharifi K; Khojasteh A
    Cell Prolif; 2017 Apr; 50(2):. PubMed ID: 27905670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induced Pluripotent Stem Cells as a new Strategy for Osteogenesis and Bone Regeneration.
    Lou X
    Stem Cell Rev Rep; 2015 Aug; 11(4):645-51. PubMed ID: 26022504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Injectable degradable PVA microgels prepared by microfluidic technology for controlled osteogenic differentiation of mesenchymal stem cells.
    Hou Y; Xie W; Achazi K; Cuellar-Camacho JL; Melzig MF; Chen W; Haag R
    Acta Biomater; 2018 Sep; 77():28-37. PubMed ID: 29981495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deriving Osteogenic Cells from Induced Pluripotent Stem Cells for Bone Tissue Engineering.
    Wu Q; Yang B; Hu K; Cao C; Man Y; Wang P
    Tissue Eng Part B Rev; 2017 Feb; 23(1):1-8. PubMed ID: 27392674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthetic electrospun nanofibers as a supportive matrix in osteogenic differentiation of induced pluripotent stem cells.
    Azari Matin A; Fattah K; Saeidpour Masouleh S; Tavakoli R; Houshmandkia SA; Moliani A; Moghimimonfared R; Pakzad S; Dalir Abdolahinia E
    J Biomater Sci Polym Ed; 2022 Aug; 33(11):1469-1493. PubMed ID: 35321624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fractionated human adipose tissue as a native biomaterial for the generation of a bone organ by endochondral ossification.
    Guerrero J; Pigeot S; Müller J; Schaefer DJ; Martin I; Scherberich A
    Acta Biomater; 2018 Sep; 77():142-154. PubMed ID: 30126590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conditioned Medium Enhances Osteogenic Differentiation of Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells.
    Zhong S; He X; Li Y; Lou X
    Tissue Eng Regen Med; 2019 Apr; 16(2):141-150. PubMed ID: 30989041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of osteogenic differentiation potential of induced pluripotent stem cells on 2D and 3D polyvinylidene fluoride scaffolds.
    Mirzaei A; Moghadam AS; Abazari MF; Nejati F; Torabinejad S; Kaabi M; Enderami SE; Ardeshirylajimi A; Darvish M; Soleimanifar F; Saburi E
    J Cell Physiol; 2019 Aug; 234(10):17854-17862. PubMed ID: 30851069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applied Induced Pluripotent Stem Cells in Combination With Biomaterials in Bone Tissue Engineering.
    Ardeshirylajimi A
    J Cell Biochem; 2017 Oct; 118(10):3034-3042. PubMed ID: 28316107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Biomaterials for bone defect repair and bone regeneration].
    Jiang XQ
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2017 Oct; 52(10):600-604. PubMed ID: 29972932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stem cells combined with bone graft substitutes in skeletal tissue engineering.
    Gamie Z; Tran GT; Vyzas G; Korres N; Heliotis M; Mantalaris A; Tsiridis E
    Expert Opin Biol Ther; 2012 Jun; 12(6):713-29. PubMed ID: 22500826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stem Cells and Their Derivatives-Implications for Alveolar Bone Regeneration: A Comprehensive Review.
    Hollý D; Klein M; Mazreku M; Zamborský R; Polák Š; Danišovič Ľ; Csöbönyeiová M
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Advances in Biomaterials for the Treatment of Bone Defects.
    Zhang LY; Bi Q; Zhao C; Chen JY; Cai MH; Chen XY
    Organogenesis; 2020 Oct; 16(4):113-125. PubMed ID: 32799735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Murine iPSC-Loaded Scaffold Grafts Improve Bone Regeneration in Critical-Size Bone Defects.
    Kessler F; Arnke K; Eggerschwiler B; Neldner Y; Märsmann S; Gröninger O; Casanova EA; Weber FA; König MA; Stark WJ; Pape HC; Cinelli P; Tiziani S
    Int J Mol Sci; 2024 May; 25(10):. PubMed ID: 38791592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.