These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 31256783)

  • 41. TIMP-1 signaling via CD63 triggers granulopoiesis and neutrophilia in mice.
    Kobuch J; Cui H; Grünwald B; Saftig P; Knolle PA; Krüger A
    Haematologica; 2015 Aug; 100(8):1005-13. PubMed ID: 26001794
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Neutrophil heterogeneity: implications for homeostasis and pathogenesis.
    Silvestre-Roig C; Hidalgo A; Soehnlein O
    Blood; 2016 May; 127(18):2173-81. PubMed ID: 27002116
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The Role of Neutrophils in the Immune System: An Overview.
    Malech HL; DeLeo FR; Quinn MT
    Methods Mol Biol; 2020; 2087():3-10. PubMed ID: 31728979
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Failure of chronic-granulocytic-leukaemia leucocytes to release an inhibition of granulopoiesis.
    Philip MA; Standen G; Fletcher J
    Lancet; 1981 Apr; 1(8225):866-8. PubMed ID: 6112295
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Tamm-Horsfall Protein Regulates Granulopoiesis and Systemic Neutrophil Homeostasis.
    Micanovic R; Chitteti BR; Dagher PC; Srour EF; Khan S; Hato T; Lyle A; Tong Y; Wu XR; El-Achkar TM
    J Am Soc Nephrol; 2015 Sep; 26(9):2172-82. PubMed ID: 25556169
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Impaired production and increased apoptosis of neutrophils in granulocyte colony-stimulating factor receptor-deficient mice.
    Liu F; Wu HY; Wesselschmidt R; Kornaga T; Link DC
    Immunity; 1996 Nov; 5(5):491-501. PubMed ID: 8934575
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Normal human granulopoiesis revisited. II. Bone marrow data.
    Mary JY
    Biomed Pharmacother; 1985; 39(2):66-77. PubMed ID: 3893558
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Behavior of Neutrophil Granulocytes during
    Biswas A; French T; Düsedau HP; Mueller N; Riek-Burchardt M; Dudeck A; Bank U; Schüler T; Dunay IR
    Front Cell Infect Microbiol; 2017; 7():259. PubMed ID: 28680853
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Transcriptome reprogramming and myeloid skewing in haematopoietic stem and progenitor cells in systemic lupus erythematosus.
    Grigoriou M; Banos A; Filia A; Pavlidis P; Giannouli S; Karali V; Nikolopoulos D; Pieta A; Bertsias G; Verginis P; Mitroulis I; Boumpas DT
    Ann Rheum Dis; 2020 Feb; 79(2):242-253. PubMed ID: 31780527
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Neutrophil differentiation from human-induced pluripotent stem cells.
    Morishima T; Watanabe K; Niwa A; Fujino H; Matsubara H; Adachi S; Suemori H; Nakahata T; Heike T
    J Cell Physiol; 2011 May; 226(5):1283-91. PubMed ID: 20945397
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Identification of an Early Unipotent Neutrophil Progenitor with Pro-tumoral Activity in Mouse and Human Bone Marrow.
    Zhu YP; Padgett L; Dinh HQ; Marcovecchio P; Blatchley A; Wu R; Ehinger E; Kim C; Mikulski Z; Seumois G; Madrigal A; Vijayanand P; Hedrick CC
    Cell Rep; 2018 Aug; 24(9):2329-2341.e8. PubMed ID: 30157427
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Resident Macrophages Cloak Tissue Microlesions to Prevent Neutrophil-Driven Inflammatory Damage.
    Uderhardt S; Martins AJ; Tsang JS; Lämmermann T; Germain RN
    Cell; 2019 Apr; 177(3):541-555.e17. PubMed ID: 30955887
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The Neutrophil Life Cycle.
    Hidalgo A; Chilvers ER; Summers C; Koenderman L
    Trends Immunol; 2019 Jul; 40(7):584-597. PubMed ID: 31153737
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Macrophage metabolism: a wound-healing perspective.
    Caputa G; Flachsmann LJ; Cameron AM
    Immunol Cell Biol; 2019 Mar; 97(3):268-278. PubMed ID: 30779212
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In vivo stimulation and inhibition of granulopoiesis: the effect of an inflammatory reaction on murine diffusion chamber granulopoiesis.
    Symann M; Anckaert MA; Huybrechts M; Ninane J; Canon JL; Sokal G
    Br J Haematol; 1982 May; 51(1):89-98. PubMed ID: 6978732
    [TBL] [Abstract][Full Text] [Related]  

  • 56. MicroRNA profiling in human neutrophils during bone marrow granulopoiesis and in vivo exudation.
    Larsen MT; Hother C; Häger M; Pedersen CC; Theilgaard-Mönch K; Borregaard N; Cowland JB
    PLoS One; 2013; 8(3):e58454. PubMed ID: 23554893
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The role of myeloid-derived suppressor cells (MDSC) in the inflammaging process.
    Salminen A; Kaarniranta K; Kauppinen A
    Ageing Res Rev; 2018 Dec; 48():1-10. PubMed ID: 30248408
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Emerging roles of infiltrating granulocytes and monocytes in homeostasis.
    Groeneweg L; Hidalgo A; A-Gonzalez N
    Cell Mol Life Sci; 2020 Oct; 77(19):3823-3830. PubMed ID: 32248248
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Sensing and translation of pathogen signals into demand-adapted myelopoiesis.
    Boettcher S; Manz MG
    Curr Opin Hematol; 2016 Jan; 23(1):5-10. PubMed ID: 26554891
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Wnt5 controls splenic myelopoiesis and neutrophil functional ambivalency during DSS-induced colitis.
    Luan Y; Hu J; Wang Q; Wang X; Li W; Qu R; Yang C; Rajendran BK; Zhou H; Liu P; Zhang N; Shi Y; Liu Y; Tang W; Lu J; Wu D
    Cell Rep; 2024 Mar; 43(3):113934. PubMed ID: 38461416
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.