These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
259 related articles for article (PubMed ID: 31257850)
1. Thiol and Halometallate, Mutually Passivated Quantum Dot Ink for Photovoltaic Application. Mandal D; Goswami PN; Rath AK ACS Appl Mater Interfaces; 2019 Jul; 11(29):26100-26108. PubMed ID: 31257850 [TBL] [Abstract][Full Text] [Related]
2. Quantum Dots Coupled to an Oriented Two-Dimensional Crystalline Matrix for Solar Cell Application. Mandal D; Rath AK ACS Appl Mater Interfaces; 2018 Nov; 10(45):39074-39082. PubMed ID: 30350942 [TBL] [Abstract][Full Text] [Related]
3. Reduction of Hydroxyl Traps and Improved Coupling for Efficient and Stable Quantum Dot Solar Cells. Mandal D; Dambhare NV; Rath AK ACS Appl Mater Interfaces; 2021 Oct; 13(39):46549-46557. PubMed ID: 34553589 [TBL] [Abstract][Full Text] [Related]
4. Photo-induced surface modification to improve the performance of lead sulfide quantum dot solar cell. Tulsani SR; Rath AK J Colloid Interface Sci; 2018 Jul; 522():120-125. PubMed ID: 29579563 [TBL] [Abstract][Full Text] [Related]
5. Solution-Phase Hybrid Passivation for Efficient Infrared-Band Gap Quantum Dot Solar Cells. Mahajan C; Sharma A; Rath AK ACS Appl Mater Interfaces; 2020 Nov; 12(44):49840-49848. PubMed ID: 33081466 [TBL] [Abstract][Full Text] [Related]
6. Efficiently Passivated PbSe Quantum Dot Solids for Infrared Photovoltaics. Liu S; Xiong K; Wang K; Liang G; Li MY; Tang H; Yang X; Huang Z; Lian L; Tan M; Wang K; Gao L; Song H; Zhang D; Gao J; Lan X; Tang J; Zhang J ACS Nano; 2021 Feb; 15(2):3376-3386. PubMed ID: 33512158 [TBL] [Abstract][Full Text] [Related]
7. Hydroiodic Acid Additive Enhanced the Performance and Stability of PbS-QDs Solar Cells via Suppressing Hydroxyl Ligand. Yang X; Yang J; Khan J; Deng H; Yuan S; Zhang J; Xia Y; Deng F; Zhou X; Umar F; Jin Z; Song H; Cheng C; Sabry M; Tang J Nanomicro Lett; 2020 Jan; 12(1):37. PubMed ID: 34138233 [TBL] [Abstract][Full Text] [Related]
8. Enhanced Passivation and Carrier Collection in Ink-Processed PbS Quantum Dot Solar Cells via a Supplementary Ligand Strategy. Yang X; Yang J; Ullah MI; Xia Y; Liang G; Wang S; Zhang J; Hsu HY; Song H; Tang J ACS Appl Mater Interfaces; 2020 Sep; 12(37):42217-42225. PubMed ID: 32805951 [TBL] [Abstract][Full Text] [Related]
10. Enhanced Power Conversion Efficiency via Hybrid Ligand Exchange Treatment of p-Type PbS Quantum Dots. Teh ZL; Hu L; Zhang Z; Gentle AR; Chen Z; Gao Y; Yuan L; Hu Y; Wu T; Patterson RJ; Huang S ACS Appl Mater Interfaces; 2020 May; 12(20):22751-22759. PubMed ID: 32347092 [TBL] [Abstract][Full Text] [Related]
11. The role of surface ligands in determining the electronic properties of quantum dot solids and their impact on photovoltaic figure of merits. Goswami PN; Mandal D; Rath AK Nanoscale; 2018 Jan; 10(3):1072-1080. PubMed ID: 29271437 [TBL] [Abstract][Full Text] [Related]
12. Unusual Surface Ligand Doping-Induced p-Type Quantum Dot Solids and Their Application in Solar Cells. Meng L; Xu Q; Thakur UK; Gong L; Zeng H; Shankar K; Wang X ACS Appl Mater Interfaces; 2020 Dec; 12(48):53942-53949. PubMed ID: 33211957 [TBL] [Abstract][Full Text] [Related]
13. Halide-, Hybrid-, and Perovskite-Functionalized Light Absorbing Quantum Materials of p-i-n Heterojunction Solar Cells. Beygi H; Sajjadi SA; Babakhani A; Young JF; van Veggel FCJM ACS Appl Mater Interfaces; 2018 Sep; 10(36):30283-30295. PubMed ID: 30107115 [TBL] [Abstract][Full Text] [Related]
14. Improved performance of colloidal CdSe quantum dot-sensitized solar cells by hybrid passivation. Huang J; Xu B; Yuan C; Chen H; Sun J; Sun L; Agren H ACS Appl Mater Interfaces; 2014 Nov; 6(21):18808-15. PubMed ID: 25310596 [TBL] [Abstract][Full Text] [Related]
15. Phase-Transfer Ligand Exchange of Lead Chalcogenide Quantum Dots for Direct Deposition of Thick, Highly Conductive Films. Lin Q; Yun HJ; Liu W; Song HJ; Makarov NS; Isaienko O; Nakotte T; Chen G; Luo H; Klimov VI; Pietryga JM J Am Chem Soc; 2017 May; 139(19):6644-6653. PubMed ID: 28431206 [TBL] [Abstract][Full Text] [Related]
16. Diffusion-controlled synthesis of PbS and PbSe quantum dots with in situ halide passivation for quantum dot solar cells. Zhang J; Gao J; Miller EM; Luther JM; Beard MC ACS Nano; 2014 Jan; 8(1):614-22. PubMed ID: 24341705 [TBL] [Abstract][Full Text] [Related]
17. Passivation of PbS Quantum Dot Surface with l-Glutathione in Solid-State Quantum-Dot-Sensitized Solar Cells. Jumabekov AN; Cordes N; Siegler TD; Docampo P; Ivanova A; Fominykh K; Medina DD; Peter LM; Bein T ACS Appl Mater Interfaces; 2016 Feb; 8(7):4600-7. PubMed ID: 26771519 [TBL] [Abstract][Full Text] [Related]
18. Role of bond adaptability in the passivation of colloidal quantum dot solids. Thon SM; Ip AH; Voznyy O; Levina L; Kemp KW; Carey GH; Masala S; Sargent EH ACS Nano; 2013 Sep; 7(9):7680-8. PubMed ID: 23909748 [TBL] [Abstract][Full Text] [Related]
19. Efficient and Stable PbS Quantum Dot Solar Cells by Triple-Cation Perovskite Passivation. Albaladejo-Siguan M; Becker-Koch D; Taylor AD; Sun Q; Lami V; Oppenheimer PG; Paulus F; Vaynzof Y ACS Nano; 2020 Jan; 14(1):384-393. PubMed ID: 31721556 [TBL] [Abstract][Full Text] [Related]
20. A New Passivation Route Leading to Over 8% Efficient PbSe Quantum-Dot Solar Cells via Direct Ion Exchange with Perovskite Nanocrystals. Zhang Z; Chen Z; Yuan L; Chen W; Yang J; Wang B; Wen X; Zhang J; Hu L; Stride JA; Conibeer GJ; Patterson RJ; Huang S Adv Mater; 2017 Nov; 29(41):. PubMed ID: 28922475 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]