BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

696 related articles for article (PubMed ID: 31258064)

  • 21. Carbon-Based Quantum Dots with Solid-State Photoluminescent: Mechanism, Implementation, and Application.
    Xu A; Wang G; Li Y; Dong H; Yang S; He P; Ding G
    Small; 2020 Dec; 16(48):e2004621. PubMed ID: 33145929
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent Progress on Carbon Quantum Dots Based Photocatalysis.
    Jung H; Sapner VS; Adhikari A; Sathe BR; Patel R
    Front Chem; 2022; 10():881495. PubMed ID: 35548671
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Carbon quantum dots and their biomedical and therapeutic applications: a review.
    Molaei MJ
    RSC Adv; 2019 Feb; 9(12):6460-6481. PubMed ID: 35518468
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis and Application of Carbon Quantum Dots Derived from Carbon Black in Bioimaging.
    Molaei MJ
    J Fluoresc; 2024 Jan; 34(1):213-226. PubMed ID: 37191828
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrochemistry in Carbon-based Quantum Dots.
    Ding X; Niu Y; Zhang G; Xu Y; Li J
    Chem Asian J; 2020 Apr; 15(8):1214-1224. PubMed ID: 32104980
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel and facile synthesis of carbon quantum dots via salep hydrothermal treatment as the silver nanoparticles support: Application to electroanalytical determination of H2O2 in fetal bovine serum.
    Jahanbakhshi M; Habibi B
    Biosens Bioelectron; 2016 Jul; 81():143-150. PubMed ID: 26943787
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Carbon quantum dots from carbonized walnut shells: Structural evolution, fluorescence characteristics, and intracellular bioimaging.
    Cheng C; Shi Y; Li M; Xing M; Wu Q
    Mater Sci Eng C Mater Biol Appl; 2017 Oct; 79():473-480. PubMed ID: 28629043
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Progress on the luminescence mechanism and application of carbon quantum dots based on biomass synthesis.
    Wang L; Weng S; Su S; Wang W
    RSC Adv; 2023 Jun; 13(28):19173-19194. PubMed ID: 37362342
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural features regulated photoluminescence intensity and cell internalization of carbon and graphene quantum dots for bioimaging.
    Choppadandi M; Guduru AT; Gondaliya P; Arya N; Kalia K; Kumar H; Kapusetti G
    Mater Sci Eng C Mater Biol Appl; 2021 Oct; 129():112366. PubMed ID: 34579885
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Green synthesized carbon quantum dots from maple tree leaves for biosensing of Cesium and electrocatalytic oxidation of glycerol.
    Chellasamy G; Arumugasamy SK; Govindaraju S; Yun K
    Chemosphere; 2022 Jan; 287(Pt 1):131915. PubMed ID: 34455121
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A review on carbon quantum dots: Synthesis, photoluminescence mechanisms and applications.
    Zhang L; Yang X; Yin Z; Sun L
    Luminescence; 2022 Oct; 37(10):1612-1638. PubMed ID: 35906748
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biomass-derived carbon quantum dot sensitizers for solid-state nanostructured solar cells.
    Briscoe J; Marinovic A; Sevilla M; Dunn S; Titirici M
    Angew Chem Int Ed Engl; 2015 Apr; 54(15):4463-8. PubMed ID: 25704873
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hydrothermal synthesis of N-doped carbon quantum dots and their application in ion-detection and cell-imaging.
    Shen TY; Jia PY; Chen DS; Wang LN
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Mar; 248():119282. PubMed ID: 33316652
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Facile synthesis of N-doped carbon dots for direct/indirect detection of heavy metal ions and cell imaging.
    Xu Z; Liu J; Wang K; Yan B; Hu S; Ren X; Gao Z
    Environ Sci Pollut Res Int; 2021 Apr; 28(16):19878-19889. PubMed ID: 33410047
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Band gap tuning and surface modification of carbon dots for sustainable environmental remediation and photocatalytic hydrogen production - A review.
    Mehta A; Mishra A; Basu S; Shetti NP; Reddy KR; Saleh TA; Aminabhavi TM
    J Environ Manage; 2019 Nov; 250():109486. PubMed ID: 31518793
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biomass-derived carbon quantum dots: a novel and sustainable fluorescent "ON-OFF-ON" sensor for ferric ions.
    Qureashi A; Pandith AH; Bashir A; Malik LA
    Anal Methods; 2021 Oct; 13(40):4756-4766. PubMed ID: 34559168
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis of N-Doped Micropore Carbon Quantum Dots with High Quantum Yield and Dual-Wavelength Photoluminescence Emission from Biomass for Cellular Imaging.
    Ren X; Zhang F; Guo B; Gao N; Zhang X
    Nanomaterials (Basel); 2019 Apr; 9(4):. PubMed ID: 30939724
    [TBL] [Abstract][Full Text] [Related]  

  • 38. One-pot bioinspired synthesis of fluorescent metal chalcogenide and carbon quantum dots: Applications and potential biotoxicity.
    Omran BA; Whitehead KA; Baek KH
    Colloids Surf B Biointerfaces; 2021 Apr; 200():111578. PubMed ID: 33508659
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recent advances in the modification of carbon-based quantum dots for biomedical applications.
    Alaghmandfard A; Sedighi O; Tabatabaei Rezaei N; Abedini AA; Malek Khachatourian A; Toprak MS; Seifalian A
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 120():111756. PubMed ID: 33545897
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sustainable Synthesis of Bright Green Fluorescent Nitrogen-Doped Carbon Quantum Dots from Alkali Lignin.
    Zhang B; Liu Y; Ren M; Li W; Zhang X; Vajtai R; Ajayan PM; Tour JM; Wang L
    ChemSusChem; 2019 Sep; 12(18):4202-4210. PubMed ID: 31328347
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 35.