These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 31258303)

  • 1. VO
    Hellier P; Wells PP; Gianolio D; Bowker M
    Top Catal; 2018; 61(5):357-364. PubMed ID: 31258303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methanol oxidation on Fe2O3 catalysts and the effects of surface Mo.
    Bowker M; Gibson EK; Silverwood IP; Brookes C
    Faraday Discuss; 2016 Jul; 188():387-98. PubMed ID: 27101412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gold Nanoparticles Supported on Fe₂O₃–MO(x) (M = Al, Zr, Zn) Composite Oxides for Partial Oxidation of Methanol.
    Roselin LS; Liao LM; Chang FW
    J Nanosci Nanotechnol; 2017 Apr; 17(4):2796-803. PubMed ID: 29668161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of active catalysts for the selective oxidative dehydrogenation of methanol on Fe2O3 surface doped with Mo oxide.
    Bowker M; Brookes C; Carley AF; House MP; Kosif M; Sankar G; Wawata I; Wells PP; Yaseneva P
    Phys Chem Chem Phys; 2013 Aug; 15(29):12056-67. PubMed ID: 23552323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and stabilisation of a high area iron molybdate surface for the selective oxidation of methanol to formaldehyde.
    Chapman S; Brookes C; Bowker M; Gibson EK; Wells PP
    Faraday Discuss; 2016 Jul; 188():115-29. PubMed ID: 27067956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The new challenge of partial oxidation of methane over Fe
    Krisnandi YK; Nurani DA; Alfian DV; Sofyani U; Faisal M; Saragi IR; Pamungkas AZ; Pratama AP
    Heliyon; 2021 Nov; 7(11):e08305. PubMed ID: 34805565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen production by partial oxidation of methanol over gold supported on Fe2O3.
    Roselin LS; Liao LM; Ou YC; Chang FW
    J Nanosci Nanotechnol; 2014 Sep; 14(9):7215-23. PubMed ID: 25924393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transient and steady state investigation of selective and non-selective reaction pathways in the oxidative dehydrogenation of propane over supported vanadia catalysts.
    Kondratenko EV; Steinfeldt N; Baerns M
    Phys Chem Chem Phys; 2006 Apr; 8(13):1624-33. PubMed ID: 16633647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tandem propane dehydrogenation and surface oxidation catalysts for selective propylene synthesis.
    Wang W; Chen S; Pei C; Luo R; Sun J; Song H; Sun G; Wang X; Zhao ZJ; Gong J
    Science; 2023 Aug; 381(6660):886-890. PubMed ID: 37498988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid mechanochemical synthesis of VOx/TiO2 as highly active catalyst for HCB removal.
    Zhang S; Huang J; Yang Y; Li Y; Wang B; Wang Y; Deng S; Yu G
    Chemosphere; 2015 Dec; 141():197-204. PubMed ID: 26218787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Core-shell structured PtRu nanoparticles@FeP promoter with an efficient nanointerface for alcohol fuel electrooxidation.
    Bao Y; Wang F; Gu X; Feng L
    Nanoscale; 2019 Oct; 11(40):18866-18873. PubMed ID: 31596300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic and dendritic catalysts.
    Wang D; Deraedt C; Ruiz J; Astruc D
    Acc Chem Res; 2015 Jul; 48(7):1871-80. PubMed ID: 26098668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deactivation of Zeolites and Zeotypes in Methanol-to-Hydrocarbons Catalysis: Mechanisms and Circumvention.
    Hwang A; Bhan A
    Acc Chem Res; 2019 Sep; 52(9):2647-2656. PubMed ID: 31403774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Core-shell nanostructured catalysts.
    Zhang Q; Lee I; Joo JB; Zaera F; Yin Y
    Acc Chem Res; 2013 Aug; 46(8):1816-24. PubMed ID: 23268644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship between Surface Chemistry and Catalytic Performance of Mesoporous γ-Al
    Bai P; Ma Z; Li T; Tian Y; Zhang Z; Zhong Z; Xing W; Wu P; Liu X; Yan Z
    ACS Appl Mater Interfaces; 2016 Oct; 8(39):25979-25990. PubMed ID: 27636162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydroxyl-Mediated Non-oxidative Propane Dehydrogenation over VO
    Zhao ZJ; Wu T; Xiong C; Sun G; Mu R; Zeng L; Gong J
    Angew Chem Int Ed Engl; 2018 Jun; 57(23):6791-6795. PubMed ID: 29517847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Serendipity in Catalysis Research: Boron-Based Materials for Alkane Oxidative Dehydrogenation.
    Venegas JM; McDermott WP; Hermans I
    Acc Chem Res; 2018 Oct; 51(10):2556-2564. PubMed ID: 30285416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fe@Fe2O3 core-shell nanowires enhanced Fenton oxidation by accelerating the Fe(III)/Fe(II) cycles.
    Shi J; Ai Z; Zhang L
    Water Res; 2014 Aug; 59():145-53. PubMed ID: 24793112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of ultrathin V-oxide layers on Rh(111) in catalytic oxidation of ammonia and CO.
    von Boehn B; Preiss A; Imbihl R
    Phys Chem Chem Phys; 2016 Jul; 18(29):19713-21. PubMed ID: 27380822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water oxidation catalysis by birnessite@iron oxide core-shell nanocomposites.
    Elmaci G; Frey CE; Kurz P; Zümreoğlu-Karan B
    Inorg Chem; 2015 Mar; 54(6):2734-41. PubMed ID: 25710557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.