These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 31259062)

  • 1. Improving visible light OCT of the human retina with rapid spectral shaping and axial tracking.
    Zhang T; Kho AM; Srinivasan VJ
    Biomed Opt Express; 2019 Jun; 10(6):2918-2931. PubMed ID: 31259062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrahigh resolution retinal imaging by visible light OCT with longitudinal achromatization.
    Chong SP; Zhang T; Kho A; Bernucci MT; Dubra A; Srinivasan VJ
    Biomed Opt Express; 2018 Apr; 9(4):1477-1491. PubMed ID: 29675296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water wavenumber calibration for visible light optical coherence tomography.
    Zhang T; Kho AM; Srinivasan VJ
    J Biomed Opt; 2020 Sep; 25(9):. PubMed ID: 32935500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Histologic correlation of pig retina radial stratification with ultrahigh-resolution optical coherence tomography.
    Gloesmann M; Hermann B; Schubert C; Sattmann H; Ahnelt PK; Drexler W
    Invest Ophthalmol Vis Sci; 2003 Apr; 44(4):1696-703. PubMed ID: 12657611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compensating spatially dependent dispersion in visible light OCT.
    Kho A; Srinivasan VJ
    Opt Lett; 2019 Feb; 44(4):775-778. PubMed ID: 30767984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation.
    Wojtkowski M; Srinivasan V; Ko T; Fujimoto J; Kowalczyk A; Duker J
    Opt Express; 2004 May; 12(11):2404-22. PubMed ID: 19475077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Limiting factors to the OCT axial resolution for in-vivo imaging of human and rodent retina in the 1060 nm wavelength range.
    Hariri S; Moayed AA; Dracopoulos A; Hyun C; Boyd S; Bizheva K
    Opt Express; 2009 Dec; 17(26):24304-16. PubMed ID: 20052141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation of spectral domain optical coherence tomography with histology and electron microscopy in the porcine retina.
    Xie W; Zhao M; Tsai SH; Burkes WL; Potts LB; Xu W; Payne HR; Hein TW; Kuo L; Rosa RH
    Exp Eye Res; 2018 Dec; 177():181-190. PubMed ID: 30120928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectral estimation optical coherence tomography for axial super-resolution.
    Liu X; Chen S; Cui D; Yu X; Liu L
    Opt Express; 2015 Oct; 23(20):26521-32. PubMed ID: 26480165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography.
    Srinivasan VJ; Ko TH; Wojtkowski M; Carvalho M; Clermont A; Bursell SE; Song QH; Lem J; Duker JS; Schuman JS; Fujimoto JG
    Invest Ophthalmol Vis Sci; 2006 Dec; 47(12):5522-8. PubMed ID: 17122144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep learning network for parallel self-denoising and segmentation in visible light optical coherence tomography of the human retina.
    Ye T; Wang J; Yi J
    Biomed Opt Express; 2023 Nov; 14(11):6088-6099. PubMed ID: 38021135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human retinal imaging using visible-light optical coherence tomography guided by scanning laser ophthalmoscopy.
    Yi J; Chen S; Shu X; Fawzi AA; Zhang HF
    Biomed Opt Express; 2015 Oct; 6(10):3701-13. PubMed ID: 26504622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From Soma to Synapse: Imaging Age-Related Rod Photoreceptor Changes in the Mouse with Visible Light OCT.
    Chauhan P; Kho AM; Srinivasan VJ
    Ophthalmol Sci; 2023 Dec; 3(4):100321. PubMed ID: 37388138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of ultrahigh- and standard-resolution optical coherence tomography for imaging macular pathology.
    Ko TH; Fujimoto JG; Schuman JS; Paunescu LA; Kowalevicz AM; Hartl I; Drexler W; Wollstein G; Ishikawa H; Duker JS
    Ophthalmology; 2005 Nov; 112(11):1922.e1-15. PubMed ID: 16183127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography.
    Wojtkowski M; Srinivasan V; Fujimoto JG; Ko T; Schuman JS; Kowalczyk A; Duker JS
    Ophthalmology; 2005 Oct; 112(10):1734-46. PubMed ID: 16140383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Common approach for compensation of axial motion artifacts in swept-source OCT and dispersion in Fourier-domain OCT.
    Hillmann D; Bonin T; Lührs C; Franke G; Hagen-Eggert M; Koch P; Hüttmann G
    Opt Express; 2012 Mar; 20(6):6761-76. PubMed ID: 22418560
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Zhang T; Kho AM; Srinivasan VJ
    Front Cell Neurosci; 2021; 15():655096. PubMed ID: 33994948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dose-dependent retinal changes following sodium iodate administration: application of spectral-domain optical coherence tomography for monitoring of retinal injury and endogenous regeneration.
    Machalińska A; Lejkowska R; Duchnik M; Kawa M; Rogińska D; Wiszniewska B; Machaliński B
    Curr Eye Res; 2014 Oct; 39(10):1033-41. PubMed ID: 24661221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous SLO/OCT imaging of the human retina with axial eye motion correction.
    Pircher M; Baumann B; Götzinger E; Sattmann H; Hitzenberger CK
    Opt Express; 2007 Dec; 15(25):16922-32. PubMed ID: 19550983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of the impact of water absorption on retinal OCT imaging in the 1060 nm range.
    Marschall S; Pedersen C; Andersen PE
    Biomed Opt Express; 2012 Jul; 3(7):1620-31. PubMed ID: 22808433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.