BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 31259174)

  • 1.
    Santos T; Viala D; Chambon C; Esbelin J; Hébraud M
    Front Nutr; 2019; 6():89. PubMed ID: 31259174
    [No Abstract]   [Full Text] [Related]  

  • 2. Physiology and genetics of Listeria monocytogenes survival and growth at cold temperatures.
    Chan YC; Wiedmann M
    Crit Rev Food Sci Nutr; 2009 Mar; 49(3):237-53. PubMed ID: 19093268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of three methods for cell surface proteome extraction of Listeria monocytogenes biofilms.
    Esbelin J; Santos T; Ribière C; Desvaux M; Viala D; Chambon C; Hébraud M
    OMICS; 2018 Dec; 22(12):779-787. PubMed ID: 30457927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extraction and Preparation of Listeria monocytogenes Subproteomes for Mass Spectrometry Analysis.
    Santos T; Hébraud M
    Methods Mol Biol; 2021; 2220():137-153. PubMed ID: 32975772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular analysis of the role of osmolyte transporters opuCA and betL in Listeria monocytogenes after cold and freezing stress.
    Miladi H; Elabed H; Ben Slama R; Rhim A; Bakhrouf A
    Arch Microbiol; 2017 Mar; 199(2):259-265. PubMed ID: 27695911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Listeria monocytogenes grown at 7° C shows reduced acid survival and an altered transcriptional response to acid shock compared to L. monocytogenes grown at 37° C.
    Ivy RA; Wiedmann M; Boor KJ
    Appl Environ Microbiol; 2012 Jun; 78(11):3824-36. PubMed ID: 22447604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MALDI mass spectrometry imaging and in situ microproteomics of Listeria monocytogenes biofilms.
    Santos T; Théron L; Chambon C; Viala D; Centeno D; Esbelin J; Hébraud M
    J Proteomics; 2018 Sep; 187():152-160. PubMed ID: 30071319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative analysis of the exoproteomes of Listeria monocytogenes strains grown at low temperatures.
    Cabrita P; Batista S; Machado H; Moes S; Jenö P; Manadas B; Trigo MJ; Monteiro S; Ferreira RB; Brito L
    Foodborne Pathog Dis; 2013 May; 10(5):428-34. PubMed ID: 23531123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Achieving continuous improvement in reductions in foodborne listeriosis--a risk-based approach.
    ;
    J Food Prot; 2005 Sep; 68(9):1932-94. PubMed ID: 16161698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of osmolytes in adaptation of osmotically stressed and chill-stressed Listeria monocytogenes grown in liquid media and on processed meat surfaces.
    Smith LT
    Appl Environ Microbiol; 1996 Sep; 62(9):3088-93. PubMed ID: 8795194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of the glycine betaine and carnitine transporters in adaptation of Listeria monocytogenes to chill stress in defined medium.
    Angelidis AS; Smith GM
    Appl Environ Microbiol; 2003 Dec; 69(12):7492-8. PubMed ID: 14660402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteomics for the elucidation of cold adaptation mechanisms in Listeria monocytogenes.
    Cacace G; Mazzeo MF; Sorrentino A; Spada V; Malorni A; Siciliano RA
    J Proteomics; 2010 Sep; 73(10):2021-30. PubMed ID: 20620249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth temperature-dependent contributions of response regulators, σB, PrfA, and motility factors to Listeria monocytogenes invasion of Caco-2 cells.
    Ivy RA; Chan YC; Bowen BM; Boor KJ; Wiedmann M
    Foodborne Pathog Dis; 2010 Nov; 7(11):1337-49. PubMed ID: 20707735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Listeria monocytogenes Requires the RsbX Protein To Prevent SigB Activation under Nonstressed Conditions.
    Oliveira AH; Tiensuu T; Guerreiro DN; Tükenmez H; Dessaux C; García-Del Portillo F; O'Byrne C; Johansson J
    J Bacteriol; 2022 Jan; 204(1):e0048621. PubMed ID: 34694900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative Whole Cell Proteomics of
    Won S; Lee J; Kim J; Choi H; Kim J
    J Microbiol Biotechnol; 2020 Feb; 30(2):259-270. PubMed ID: 31838794
    [No Abstract]   [Full Text] [Related]  

  • 16. Contributions of two-component regulatory systems, alternative sigma factors, and negative regulators to Listeria monocytogenes cold adaptation and cold growth.
    Chan YC; Hu Y; Chaturongakul S; Files KD; Bowen BM; Boor KJ; Wiedmann M
    J Food Prot; 2008 Feb; 71(2):420-5. PubMed ID: 18326199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SigmaB-dependent and sigmaB-independent mechanisms contribute to transcription of Listeria monocytogenes cold stress genes during cold shock and cold growth.
    Chan YC; Boor KJ; Wiedmann M
    Appl Environ Microbiol; 2007 Oct; 73(19):6019-29. PubMed ID: 17675428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomic Analysis of
    Melian C; Castellano P; Segli F; Mendoza LM; Vignolo GM
    Front Microbiol; 2021; 12():604126. PubMed ID: 33584610
    [No Abstract]   [Full Text] [Related]  

  • 19. Increased Isoprenoid Quinone Concentration Modulates Membrane Fluidity in Listeria monocytogenes at Low Growth Temperatures.
    Seel W; Flegler A; Zunabovic-Pichler M; Lipski A
    J Bacteriol; 2018 Jul; 200(13):. PubMed ID: 29661862
    [No Abstract]   [Full Text] [Related]  

  • 20. Elevated carnitine accumulation by Listeria monocytogenes impaired in glycine betaine transport is insufficient to restore wild-type cryotolerance in milk whey.
    Angelidis AS; Smith LT; Smith GM
    Int J Food Microbiol; 2002 May; 75(1-2):1-9. PubMed ID: 11999105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.