These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 31259174)

  • 61. Predictive modeling for growth of non- and cold-adapted Listeria monocytogenes on fresh-cut cantaloupe at different storage temperatures.
    Hong YK; Yoon WB; Huang L; Yuk HG
    J Food Sci; 2014 Jun; 79(6):M1168-74. PubMed ID: 24754226
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Proteomic analysis of cross protection provided between cold and osmotic stress in Listeria monocytogenes.
    Pittman JR; Buntyn JO; Posadas G; Nanduri B; Pendarvis K; Donaldson JR
    J Proteome Res; 2014 Apr; 13(4):1896-904. PubMed ID: 24564473
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Listeria monocytogenes in Food-Processing Facilities, Food Contamination, and Human Listeriosis: The Brazilian Scenario.
    Camargo AC; Woodward JJ; Call DR; Nero LA
    Foodborne Pathog Dis; 2017 Nov; 14(11):623-636. PubMed ID: 28767285
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Growth and filamentation of cold-adapted, log-phase Listeria monocytogenes exposed to salt, acid, or alkali stress at 3°C.
    Vail KM; McMullen LM; Jones TH
    J Food Prot; 2012 Dec; 75(12):2142-50. PubMed ID: 23212010
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Listeria: A foodborne pathogen that knows how to survive.
    Gandhi M; Chikindas ML
    Int J Food Microbiol; 2007 Jan; 113(1):1-15. PubMed ID: 17010463
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Cold-shock proteins affect desiccation tolerance, biofilm formation and motility in Listeria monocytogenes.
    Kragh ML; Muchaamba F; Tasara T; Truelstrup Hansen L
    Int J Food Microbiol; 2020 Sep; 329():108662. PubMed ID: 32505890
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Sugar Modification of Wall Teichoic Acids Determines Serotype-Dependent Strong Biofilm Production in Listeria monocytogenes.
    Park M; Kim J; Horn L; Haan J; Strickland A; Lappi V; Boxrud D; Hedberg C; Ryu S; Jeon B
    Microbiol Spectr; 2022 Oct; 10(5):e0276922. PubMed ID: 36190419
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Acid adaptation and survival of Listeria monocytogenes in Italian-style soft cheeses.
    Cataldo G; Conte MP; Chiarini F; Seganti L; Ammendolia MG; Superti F; Longhi C
    J Appl Microbiol; 2007 Jul; 103(1):185-93. PubMed ID: 17584464
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Time-Resolved Proteome Analysis of
    Birk MS; Ahmed-Begrich R; Tran S; Elsholz AKW; Frese CK; Charpentier E
    mSystems; 2021 Aug; 6(4):e0021521. PubMed ID: 34342529
    [TBL] [Abstract][Full Text] [Related]  

  • 70.
    Bernardo R; Duarte A; Tavares L; Barreto AS; Henriques AR
    Foods; 2021 Jan; 10(2):. PubMed ID: 33498826
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Three transporters mediate uptake of glycine betaine and carnitine by Listeria monocytogenes in response to hyperosmotic stress.
    Angelidis AS; Smith GM
    Appl Environ Microbiol; 2003 Feb; 69(2):1013-22. PubMed ID: 12571024
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The alternative sigma factor sigma(L) of L. monocytogenes promotes growth under diverse environmental stresses.
    Raimann E; Schmid B; Stephan R; Tasara T
    Foodborne Pathog Dis; 2009 Jun; 6(5):583-91. PubMed ID: 19422306
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Glycine betaine confers enhanced osmotolerance and cryotolerance on Listeria monocytogenes.
    Ko R; Smith LT; Smith GM
    J Bacteriol; 1994 Jan; 176(2):426-31. PubMed ID: 8288538
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Attenuation of
    Marini E; Magi G; Ferretti G; Bacchetti T; Giuliani A; Pugnaloni A; Rippo MR; Facinelli B
    Front Cell Infect Microbiol; 2018; 8():293. PubMed ID: 30186775
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Persistence of
    Liu X; Chen W; Fang Z; Yu Y; Bi J; Wang J; Dong Q; Zhang H
    Foods; 2022 Aug; 11(17):. PubMed ID: 36076746
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Differential Modulation of Listeria monocytogenes Fitness,
    Zilelidou EA; Milina V; Paramithiotis S; Zoumpopoulou G; Poimenidou SV; Mavrogonatou E; Kletsas D; Papadimitriou K; Tsakalidou E; Skandamis PN
    Appl Environ Microbiol; 2020 Aug; 86(17):. PubMed ID: 32591377
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Rhizobacteria Impact Colonization of Listeria monocytogenes on Arabidopsis thaliana Roots.
    Schoenborn AA; Clapper H; Eckshtain-Levi N; Shank EA
    Appl Environ Microbiol; 2021 Nov; 87(23):e0141121. PubMed ID: 34550783
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Assessment of Listeria monocytogenes Surface Proteins Identified from Proteomics Analysis for Use as Diagnostic Biomarkers.
    Zhang CXY; Brooks BW; Huang H; Lin M
    Appl Environ Microbiol; 2022 May; 88(10):e0003522. PubMed ID: 35477262
    [TBL] [Abstract][Full Text] [Related]  

  • 79. sigmaB-dependent gene induction and expression in Listeria monocytogenes during osmotic and acid stress conditions simulating the intestinal environment.
    Sue D; Fink D; Wiedmann M; Boor KJ
    Microbiology (Reading); 2004 Nov; 150(Pt 11):3843-3855. PubMed ID: 15528669
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Modeling the lag phase and growth rate of Listeria monocytogenes in ground ham containing sodium lactate and sodium diacetate at various storage temperatures.
    Hwang CA; Tamplin ML
    J Food Sci; 2007 Sep; 72(7):M246-53. PubMed ID: 17995648
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.