BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 31259434)

  • 1. Evaluation of laccase production by Ganoderma lucidum in submerged and solid-state fermentation using different inducers.
    Rodrigues EM; Karp SG; Malucelli LC; Helm CV; Alvarez TM
    J Basic Microbiol; 2019 Aug; 59(8):784-791. PubMed ID: 31259434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of laccase production by two strains of Ganoderma lucidum using phenolic and metallic inducers.
    Kuhar F; Papinutti L
    Rev Argent Microbiol; 2014; 46(2):144-9. PubMed ID: 25011599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of
    Yuliana T; Putri NZ; Komara DZ; Mardawati E; Lanti I; Rahimah S
    Pak J Biol Sci; 2020 Jan; 23(8):1060-1065. PubMed ID: 32700857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential of Lignocellulosic Waste for Laccase Production by
    Yuliana T; Komara DZ; Saripudin GLU; Subroto E; Safitri R
    Pak J Biol Sci; 2021 Jan; 24(6):699-705. PubMed ID: 34486346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of ligninolytic potentials of a white-rot fungus Ganoderma lucidum for degradation of lindane.
    Kaur H; Kapoor S; Kaur G
    Environ Monit Assess; 2016 Oct; 188(10):588. PubMed ID: 27670886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conditions Affecting Lingzhi or Reishi Medicinal Mushroom Ganoderma lucidum (Agaricomycetes) Basidiome Quality, Morphogenesis, and Biodegradation of Wood By-products in Argentina.
    Kuhar F; Postemsky PD; Bianchinotti MV
    Int J Med Mushrooms; 2018; 20(5):495-506. PubMed ID: 29953364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improvement of laccase activity by silencing PacC in Ganoderma lucidum.
    Zhu J; Song S; Lian L; Shi L; Ren A; Zhao M
    World J Microbiol Biotechnol; 2022 Jan; 38(2):32. PubMed ID: 34989903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of a laccase from Ganoderma lucidum CBS 229.93 having potential for enhancing cellulase catalyzed lignocellulose degradation.
    Sitarz AK; Mikkelsen JD; Højrup P; Meyer AS
    Enzyme Microb Technol; 2013 Dec; 53(6-7):378-85. PubMed ID: 24315640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of carbon source succession on laccase activity in the co-culture process of Ganoderma lucidum and a yeast.
    Li P; Wang H; Liu G; Li X; Yao J
    Enzyme Microb Technol; 2011 Jan; 48(1):1-6. PubMed ID: 22112763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of Basidiomata and Ligninolytic Enzymes by the Lingzhi or Reishi Medicinal Mushroom, Ganoderma lucidum (Agaricomycetes), in Licuri (Syagrus coronata) Wastes in Brazil.
    de Menezes TA; Bispo AS; Koblitz MG; Vandenberghe LP; Kamida HM; Goes-Neto A
    Int J Med Mushrooms; 2016; 18(12):1141-1149. PubMed ID: 28094752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laccase and manganese peroxidase activities of Phellinus robustus and Ganoderma adspersum grown on food industry wastes in submerged fermentation.
    Songulashvili G; Elisashvili V; Wasser S; Nevo E; Hadar Y
    Biotechnol Lett; 2006 Sep; 28(18):1425-9. PubMed ID: 16823599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of media components for laccase production by litter dwelling fungal isolate Fusarium incarnatum LD-3.
    Chhaya U; Gupte A
    J Basic Microbiol; 2010 Feb; 50(1):43-51. PubMed ID: 20082375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of laccase isoforms produced by Pleurotus ostreatus in solid state fermentation of sugarcane bagasse.
    Karp SG; Faraco V; Amore A; Birolo L; Giangrande C; Soccol VT; Pandey A; Soccol CR
    Bioresour Technol; 2012 Jun; 114():735-9. PubMed ID: 22487128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of laccase production by Trametes versicolor cultivated on industrial waste.
    Tišma M; Znidaršič-Plazl P; Vasić-Rački D; Zelić B
    Appl Biochem Biotechnol; 2012 Jan; 166(1):36-46. PubMed ID: 21989801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial pyruvate carrier regulates the lignocellulosic decomposition rate through metabolism in Ganoderma lucidum.
    Xu W; Fan J; Wang Y; Wang Y; Zhu J; Ren A; Yu H; Shi L; Zhao M
    FEMS Microbiol Lett; 2021 Jul; 368(14):. PubMed ID: 34227669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Statistical Optimization of Laccase Production and Delignification of Sugarcane Bagasse by Pleurotus ostreatus in Solid-State Fermentation.
    Karp SG; Faraco V; Amore A; Letti LA; Thomaz Soccol V; Soccol CR
    Biomed Res Int; 2015; 2015():181204. PubMed ID: 26180784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intraspecific diversity within Ganoderma lucidum in the production of laccase and Mn-oxidizing peroxidases during plant residues fermentation.
    Simonić J; Vukojević J; Stajić M; Glamoclija J
    Appl Biochem Biotechnol; 2010 Sep; 162(2):408-15. PubMed ID: 19946761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth and laccase production by Pleurotus ostreatus in submerged and solid-state fermentation.
    Téllez-Téllez M; Fernández FJ; Montiel-González AM; Sánchez C; Díaz-Godínez G
    Appl Microbiol Biotechnol; 2008 Dec; 81(4):675-9. PubMed ID: 18762938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation and Physicochemical Characterization of Laccase from
    Shrestha P; Joshi B; Joshi J; Malla R; Sreerama L
    Biomed Res Int; 2016; 2016():3238909. PubMed ID: 27822471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo enzymatic digestion, in vitro xylanase digestion, metabolic analogues, surfactants and polyethylene glycol ameliorate laccase production from Ganoderma sp. kk-02.
    Sharma KK; Kapoor M; Kuhad RC
    Lett Appl Microbiol; 2005; 41(1):24-31. PubMed ID: 15960748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.