These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 31259525)
1. Nanoscale Characteristics and Antimicrobial Properties of (SI-ATRP)-Seeded Polymer Brush Surfaces. Oh YJ; Khan ES; Campo AD; Hinterdorfer P; Li B ACS Appl Mater Interfaces; 2019 Aug; 11(32):29312-29319. PubMed ID: 31259525 [TBL] [Abstract][Full Text] [Related]
2. Effects of Grafting Density and Film Thickness on the Adhesion of Staphylococcus epidermidis to Poly(2-hydroxy ethyl methacrylate) and Poly(poly(ethylene glycol)methacrylate) Brushes. Ibanescu SA; Nowakowska J; Khanna N; Landmann R; Klok HA Macromol Biosci; 2016 May; 16(5):676-85. PubMed ID: 26757483 [TBL] [Abstract][Full Text] [Related]
3. Functional polymer brushes via surface-initiated atom transfer radical graft polymerization for combating marine biofouling. Yang WJ; Neoh KG; Kang ET; Lee SS; Teo SL; Rittschof D Biofouling; 2012; 28(9):895-912. PubMed ID: 22963034 [TBL] [Abstract][Full Text] [Related]
4. Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification. J Vis Exp; 2019 Apr; (146):. PubMed ID: 31038480 [TBL] [Abstract][Full Text] [Related]
5. Ionic interaction-driven switchable bactericidal surfaces. Ni Y; Zhang D; Wang S; Yuan J; Che L; Sha D; Kabir MF; Zheng SY; Tan J; Yang J Acta Biomater; 2022 Apr; 142():124-135. PubMed ID: 35149242 [TBL] [Abstract][Full Text] [Related]
6. Binary polymer brush patterns from facile initiator stickiness for cell culturing. Chen L; Li P; Lu X; Wang S; Zheng Z Faraday Discuss; 2019 Oct; 219(0):189-202. PubMed ID: 31317169 [TBL] [Abstract][Full Text] [Related]
7. Zwitterionic polymer brushes via dopamine-initiated ATRP from PET sheets for improving hemocompatible and antifouling properties. Jin X; Yuan J; Shen J Colloids Surf B Biointerfaces; 2016 Sep; 145():275-284. PubMed ID: 27208441 [TBL] [Abstract][Full Text] [Related]
8. Surface charge control for zwitterionic polymer brushes: Tailoring surface properties to antifouling applications. Guo S; Jańczewski D; Zhu X; Quintana R; He T; Neoh KG J Colloid Interface Sci; 2015 Aug; 452():43-53. PubMed ID: 25913777 [TBL] [Abstract][Full Text] [Related]
9. Antibacterial surfaces based on polymer brushes: investigation on the influence of brush properties on antimicrobial peptide immobilization and antimicrobial activity. Gao G; Yu K; Kindrachuk J; Brooks DE; Hancock RE; Kizhakkedathu JN Biomacromolecules; 2011 Oct; 12(10):3715-27. PubMed ID: 21902171 [TBL] [Abstract][Full Text] [Related]
10. Uptake of pH-Sensitive Gold Nanoparticles in Strong Polyelectrolyte Brushes. Kesal D; Christau S; Krause P; Möller T; Von Klitzing R Polymers (Basel); 2016 Apr; 8(4):. PubMed ID: 30979224 [TBL] [Abstract][Full Text] [Related]
12. Charged hydrophilic polymer brushes and their relevance for understanding marine biofouling. Yandi W; Mieszkin S; di Fino A; Martin-Tanchereau P; Callow ME; Callow JA; Tyson L; Clare AS; Ederth T Biofouling; 2016 Jul; 32(6):609-25. PubMed ID: 27125564 [TBL] [Abstract][Full Text] [Related]
13. Fibroblast adhesion on ECM-derived peptide modified poly(2-hydroxyethyl methacrylate) brushes: ligand co-presentation and 3D-localization. Desseaux S; Klok HA Biomaterials; 2015 Mar; 44():24-35. PubMed ID: 25617123 [TBL] [Abstract][Full Text] [Related]
14. Biomimetic anchors for antifouling and antibacterial polymer brushes on stainless steel. Yang WJ; Cai T; Neoh KG; Kang ET; Dickinson GH; Teo SL; Rittschof D Langmuir; 2011 Jun; 27(11):7065-76. PubMed ID: 21563843 [TBL] [Abstract][Full Text] [Related]
15. Infection resistant polymer brush coating on the surface of biodegradable polyester. Dhingra S; Joshi A; Singh N; Saha S Mater Sci Eng C Mater Biol Appl; 2021 Jan; 118():111465. PubMed ID: 33255047 [TBL] [Abstract][Full Text] [Related]
16. Polymer-brush stationary phases for open-tubular capillary electrochromatography. Miller MD; Baker GL; Bruening ML J Chromatogr A; 2004 Jul; 1044(1-2):323-30. PubMed ID: 15354455 [TBL] [Abstract][Full Text] [Related]
17. Completely aqueous procedure for the growth of polymer brushes on polymeric substrates. Jain P; Dai J; Grajales S; Saha S; Baker GL; Bruening ML Langmuir; 2007 Nov; 23(23):11360-5. PubMed ID: 17918978 [TBL] [Abstract][Full Text] [Related]
18. Surface-initiated atom-transfer radical polymerization (SI-ATRP) of bactericidal polymer brushes on poly(lactic acid) surfaces. Kalelkar PP; Geng Z; Cox B; Finn MG; Collard DM Colloids Surf B Biointerfaces; 2022 Mar; 211():112242. PubMed ID: 34929482 [TBL] [Abstract][Full Text] [Related]
19. Room temperature, aqueous post-polymerization modification of glycidyl methacrylate-containing polymer brushes prepared via surface-initiated atom transfer radical polymerization. Barbey R; Klok HA Langmuir; 2010 Dec; 26(23):18219-30. PubMed ID: 21062007 [TBL] [Abstract][Full Text] [Related]
20. Self-Adaptive Antibacterial Coating for Universal Polymeric Substrates Based on a Micrometer-Scale Hierarchical Polymer Brush System. Liu T; Yan S; Zhou R; Zhang X; Yang H; Yan Q; Yang R; Luan S ACS Appl Mater Interfaces; 2020 Sep; 12(38):42576-42585. PubMed ID: 32867474 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]