These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
87 related articles for article (PubMed ID: 31259926)
1. First-order approximation of fluorescence excitation-transmission to accelerate fluorescence molecular tomography image reconstruction. Liu K; Jiang X; Deng Y Opt Lett; 2019 Jul; 44(13):3222-3225. PubMed ID: 31259926 [TBL] [Abstract][Full Text] [Related]
2. Quantitative Monte Carlo-based holmium-166 SPECT reconstruction. Elschot M; Smits ML; Nijsen JF; Lam MG; Zonnenberg BA; van den Bosch MA; Viergever MA; de Jong HW Med Phys; 2013 Nov; 40(11):112502. PubMed ID: 24320461 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of path-history-based fluorescence Monte Carlo method for photon migration in heterogeneous media. Jiang X; Deng Y; Luo Z; Wang K; Lian L; Yang X; Meglinski I; Luo Q Opt Express; 2014 Dec; 22(26):31948-65. PubMed ID: 25607163 [TBL] [Abstract][Full Text] [Related]
4. Accelerating fDOT image reconstruction based on path-history fluorescence Monte Carlo model by using three-level parallel architecture. Jiang X; Deng Y; Luo Z; Luo Q Opt Express; 2015 Oct; 23(20):25996-6011. PubMed ID: 26480115 [TBL] [Abstract][Full Text] [Related]
5. A higher order diffusion model for three-dimensional photon migration and image reconstruction in optical tomography. Yuan Z; Hu XH; Jiang H Phys Med Biol; 2009 Jan; 54(1):65-88. PubMed ID: 19060361 [TBL] [Abstract][Full Text] [Related]
6. Development of an attenuation correction method for direct x-ray fluorescence (XRF) imaging utilizing gold L-shell XRF photons. Ahmed MF; Yasar S; Cho SH Med Phys; 2018 Dec; 45(12):5543-5554. PubMed ID: 30307623 [TBL] [Abstract][Full Text] [Related]
7. Feasibility study of Compton cameras for x-ray fluorescence computed tomography with humans. Vernekohl D; Ahmad M; Chinn G; Xing L Phys Med Biol; 2016 Dec; 61(24):8521-8540. PubMed ID: 27845933 [TBL] [Abstract][Full Text] [Related]
8. Improved quantitative Dewaraja YK; Chun SY; Srinivasa RN; Kaza RK; Cuneo KC; Majdalany BS; Novelli PM; Ljungberg M; Fessler JA Med Phys; 2017 Dec; 44(12):6364-6376. PubMed ID: 28940483 [TBL] [Abstract][Full Text] [Related]
9. Reconstruction of high-resolution early-photon tomography based on the first derivative of temporal point spread function. Cheng J; Cai C; Luo J J Biomed Opt; 2018 Jun; 23(6):1-4. PubMed ID: 29943525 [TBL] [Abstract][Full Text] [Related]
10. Direct reconstruction method for time-domain fluorescence molecular lifetime tomography. Cai C; Zhang L; Zhang J; Bai J; Luo J Opt Lett; 2015 Sep; 40(17):4038-41. PubMed ID: 26368706 [TBL] [Abstract][Full Text] [Related]
11. A New Method Based on Graphics Processing Units for Fast Near-Infrared Optical Tomography. Jiang J; Ahnen L; Kalyanov A; Lindner S; Wolf M; Majos SS Adv Exp Med Biol; 2017; 977():191-197. PubMed ID: 28685445 [TBL] [Abstract][Full Text] [Related]
12. Reconstruction of fluorescence molecular tomography with a cosinoidal level set method. Zhang X; Cao X; Zhu S Biomed Eng Online; 2017 Jun; 16(1):86. PubMed ID: 28655316 [TBL] [Abstract][Full Text] [Related]
13. Reconstruction of deforming aortas in two-photon autofluorescence image sequences. Wang J; Ji L; Ma H Appl Opt; 2003 Feb; 42(5):834-44. PubMed ID: 12593487 [TBL] [Abstract][Full Text] [Related]
14. Monte Carlo simulation of time-dependent, transport-limited fluorescent boundary measurements in frequency domain. Pan T; Rasmussen JC; Lee JH; Sevick-Muraca EM Med Phys; 2007 Apr; 34(4):1298-311. PubMed ID: 17500461 [TBL] [Abstract][Full Text] [Related]
15. A study on 3D Monte Carlo modeling of photon propagation through tissue. Kiymik MK J Med Syst; 1995 Aug; 19(4):313-22. PubMed ID: 8522907 [TBL] [Abstract][Full Text] [Related]
16. Fast hybrid SPECT simulation including efficient septal penetration modelling (SP-PSF). Staelens S; de Wit T; Beekman F Phys Med Biol; 2007 Jun; 52(11):3027-43. PubMed ID: 17505087 [TBL] [Abstract][Full Text] [Related]
17. Information-theoretic discrepancy based iterative reconstructions (IDIR) for polychromatic x-ray tomography. Jang KE; Lee J; Sung Y; Lee S Med Phys; 2013 Sep; 40(9):091908. PubMed ID: 24007159 [TBL] [Abstract][Full Text] [Related]
18. Reconstruction of fluorescence distribution hidden in biological tissue using mesoscopic epifluorescence tomography. Björn S; Englmeier KH; Ntziachristos V; Schulz R J Biomed Opt; 2011 Apr; 16(4):046005. PubMed ID: 21529074 [TBL] [Abstract][Full Text] [Related]
19. Geometrical and Monte Carlo projectors in 3D PET reconstruction. Aguiar P; Rafecas M; Ortuño JE; Kontaxakis G; Santos A; Pavía J; Ros D Med Phys; 2010 Nov; 37(11):5691-702. PubMed ID: 21158281 [TBL] [Abstract][Full Text] [Related]
20. Construction of the Jacobian matrix for fluorescence diffuse optical tomography using a perturbation Monte Carlo method. Zhang X Proc SPIE Int Soc Opt Eng; 2012 Feb; 8216():82160O. PubMed ID: 24027610 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]